AI Agent入门教程:手把手教你用扣子搭建第一个智能体!

今天想来跟大家聊聊的是,怎么用扣子搭出你的第一个AI Agent(智能体)!喏~就是下图里面的平台,可以百度一下:扣子/Coze!就能找到它的官网

在开始讲述怎么做之前,先来看看这个是什么东东,又有什么样的优势咧!简单介绍一下它:扣子(Coze)是字节跳动出的一个一站式AI Agent搭建平台。

图片

你不需要懂编程,就能在扣子平台上快速搭建出基于AI大模型的各种AI Agent,而且你还能将搭建出来的智能体发布到各类社交平台,如公众号、飞书、抖音、豆包等,从而让你的AI Agent获取更多用户。


 扣子的功能与优势 
无限拓展的能力集

扣子内置了丰富的插件工具,同时它也支持自定义插件,在搭建的时候应用官方或自定义的插件,可以极大地拓展 Agent的能力边界。

内置插件:目前平台已经集成了超过 60 款各类型的插件,包括资讯阅读、旅游出行、效率办公、图片理解等 API 及多模态模型。你可以直接将这些插件添加到 Agent 中,丰富Agent能力。例如:你可以使用一个新闻插件,打造一个可以播报最新时事新闻的 AI 新闻播音员。

自定义插件:扣子平台也支持创建自定义插件。它能将已有的 API 能力通过参数配置的方式快速创建一个插件让 Bot 调用。

丰富的数据源

扣子提供了简单易用的知识库功能来管理和存储数据,支持Agent与你自己的数据进行交互。无论是内容量巨大的本地文件还是某个网站的实时信息,都可以上传到知识库中,这样你的AI Agent就能使用知识库中的内容回答问题了。

内容格式:知识库支持添加文本格式、表格格式的数据。

内容上传:你可以将本地 TXT、PDF、DOCX、Excel、CSV 格式的文档上传至知识库,也可以基于 URL 获取在线网页内容,更是支持支持直接在知识库内添加自定义数据。

图片

持久的记忆能力

扣子提供了方便 AI 交互的数据库记忆能力,可持久记住用户对话的重要参数或内容。打个比方:创建一个数据库来记录阅读笔记,包括书名、阅读进度和个人注释。有了数据库之后,AI Agent就可以通过查询数据库中的数据来提供更准确的答案。

灵活的工作流设计

扣子的工作流功能可以用来处理逻辑复杂,且有较高稳定性要求的任务流。扣子提供了大量灵活可组合的节点包括大语言模型 LLM、自定义代码、判断逻辑等,无论你是否有编程基础,都可以通过拖拉拽的方式快速搭建一个工作流。

例如:

1、创建一个搜集电影评论的工作流,快速查看一部最新电影的评论与评分。

2、创建一个撰写行业研究报告的工作流,让 AI Agent写一份 20 页的报告。

图片


 如何搭建你的第一个AI Agent 

无论你是否有编程基础,你都可以在扣子平台快速搭建一个AI Agent 。本文以一个可以给你发送 AI 新闻的AI Agent 为例,给你演示如何在扣子平台搭建 Agent。后续你可以发挥自己的想象力,给自己搭建多个好玩又好用的AI Agent,给自己的工作和生活提效!

步骤 1:创建一个AI Agent

系统会默认创建一个 Personal 的个人团队,该团队内创建的资源例如 Agent、插件、知识库等无法分享给其他团队成员。当你进入团队空间后,扣子会默认打开 Agents 页面。

  1. 在 Agents 页面,单击创建 Agent

  2. 输入 Agent 名称和介绍,然后单击图标旁边的生成图标,自动生成一个头像。

  3. 单击确认

图片

在Agent创建完成后,你会直接进入AI Agent的编辑页面。

  1. 你可以在左侧人设与回复逻辑面板中描述 Agent 的身份和任务,单击复制可使用模板格式添加描述,官方在编辑页面下方也有提供推荐模块,可以点击使用后根据需要进行调整。

  2. 之后,你需要在中间技能面板为这个AI Agent 配置各种扩展能力,如工作流、触发器、配置数据库等,同时还能调整大模型,可选DeepSeek、通义千问、文心一言等大模型。

  3. 技能配置完毕之后,可以在右侧预览与调试面板中,实时调试AI Agent,看是否满足你的使用需求。

图片


步骤 2:编写提示词 

配置 Agent 的第一步就编写提示词,这一步里面需要确定这个AI Agent 的人设与回复逻辑

提示词是给大型语言模型(LLM)的指令,以指导其生成输出。Agent根据 LLM对提示词的理解来回答用户的问题,提示词越清晰,越符合预期。在Agent配置页面的人设与回复逻辑面板中输入内容。例如:以下内容仅供示意。

每天给我推送 AI 相关的新闻。

之后,你可以单击页面中的优化按钮,让扣子自带的大语言模型优化帮你将它优化为结构化的提示词


步骤 3:为  Agent添加技能

在设定这个AI Agent的人设与回复逻辑后,你需要为Agent配置技能,以保证其可以按照预期完成目标任务。以本文中的获取AI新闻的AI Agent 为例,你需要为它添加一个搜索新闻的接口来获取AI相关的新闻。

  1. 在 Agent 编排页面的技能区域,单击插件功能对应的 + 图标。

  2. 添加插件页面,选择 阅读新闻 > 头条新闻 > getToutiaoNews,然后单击新增

图片

在优化后的提示词中,修改人设与回复逻辑,让AI Agent使用getToutiaoNews插件来搜索AI新闻,否则Agent可能不会按照你的预期预期调用该工具。

图片

你也可以为这个AI Agent 添加开场白,让用户更好的了解 Agent的功能,但目前扣子的开场白功能仅支持豆包、微信公众号(认证后的服务号)。


步骤 4:测试你的 Agent  

配置好这个AI Agent后,就可以在预览与调试区域中测试这个AI Agent 是否符合预期,测试后可单击清除图标清除对话记录。

图片


步骤 5:发布你的 Agent 

在完成测试后,你就可以将你搭建好的这个AI Agent发布到社交渠道中,让用户去使用这个AI Agent,后续也可以根据用户的使用反馈进行优化调整。

  1. 在AI Agent 的编排页面右上角,单击发布会跳转到下图。

  2. 可以在发布页面输入发布记录,并勾选发布渠道(红色框部分)。

  3. 选择完成后,即可单击发布

图片


当我在扣子里面,搭建了一个又一个AI Agent之后,我发现我的工作效率有质的提升!除了提效之外,我还发现一个扣子的好处!

就是扣子不仅能打通字节自家的产品,还打通了微信公众号平台,对于某些企业来说可能是件好事!因为经过认证的微信服务号,可通过接入AI Agent对用户的疑问进行回答,直接化身真·智能客服,可以大大减少了人力成本!

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值