模糊数学学习笔记 4:模糊关系

个人博客地址 Glooow,欢迎光临~~~

1. 模糊关系

定义:模糊关系 R R R 的隶属函数 μ R : U × V → [ 0 , 1 ] \mu_R:U\times V\to[0,1] μR:U×V[0,1],其中 μ R ( x , y ) \mu_R(x,y) μR(x,y) 表示 ( x , y ) (x,y) (x,y) 具有关系 R R R 的程度

Remarks:实际上模糊关系 R R R 就是定义在一个笛卡尔积的论域 U × V U\times V U×V 上的模糊关系,与之前介绍的普通的模糊关系并无太大差别。

基本运算定义为:

  • μ R ∪ S ( x , y ) = μ R ( x , y ) ∨ μ S ( x , y ) \boldsymbol{\mu}_{R \cup S}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{\mu}_{R}(\boldsymbol{x}, \boldsymbol{y}) \vee \boldsymbol{\mu}_{S}(\boldsymbol{x}, \boldsymbol{y}) μRS(x,y)=μR(x,y)μS(x,y)
  • μ R ∩ S ( x , y ) = μ R ( x , y ) ∧ μ S ( x , y ) \boldsymbol{\mu}_{R \cap S}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{\mu}_{R}(\boldsymbol{x}, \boldsymbol{y}) \wedge \boldsymbol{\mu}_{S}(\boldsymbol{x}, \boldsymbol{y}) μRS(x,y)=μR(x,y)μS(x,y)
  • μ R ˉ ( x , y ) = 1 − μ R ( x , y ) \mu_{\bar{R}}(x,y)=1-\mu_R(x,y) μRˉ(x,y)=1μR(x,y)
  • 包含 R ⊆ S ⇒ μ R ( x , y ) ≤ μ S ( x , y ) \boldsymbol{R} \subseteq \boldsymbol{S} \Rightarrow \boldsymbol{\mu}_{R}(\boldsymbol{x}, \boldsymbol{y}) \leq \boldsymbol{\mu}_{S}(\boldsymbol{x}, \boldsymbol{y}) RSμR(x,y)μS(x,y)
  • 相等 R = S ⇒ μ R ( x , y ) = μ S ( x , y ) \boldsymbol{R} = \boldsymbol{S} \Rightarrow \boldsymbol{\mu}_{R}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\mu}_{S}(\boldsymbol{x}, \boldsymbol{y}) R=SμR(x,y)=μS(x,y)

一些模糊关系有:

  • 恒等模糊关系 R ( x , y ) = I x = y R(x,y)=\mathbb{I}_{x=y} R(x,y)=Ix=y
  • 零模糊关系 O ( x , y ) = 0 O(x,y)=0 O(x,y)=0
  • 全称模糊关系 E ( x , y ) = 1 E(x,y)=1 E(x,y)=1

2. 模糊矩阵

2.1 定义

对于有限论域 U , V U,V U,V,模糊矩阵的定义很容易可以获得 R i j = μ R ( x i , y j ) R_{ij}=\mu_R(x_i,y_j) Rij=μR(xi,yj)

R R R 的对角元素全部为 1 时,称为模糊自反矩阵

模糊矩阵对应于集合的运算定义为:

  • R ∪ S ⇔ R ∪ S = ( r i j ∨ s i j ) \boldsymbol{R} \cup \boldsymbol{S} \Leftrightarrow \boldsymbol{R} \cup \boldsymbol{S}=\left(\boldsymbol{r}_{i j} \vee \boldsymbol{s}_{i j}\right) RSRS=(rijsij)
  • R ∩ S ⇔ R ∪ S = ( r i j ∧ s i j ) \boldsymbol{R} \cap \boldsymbol{S} \Leftrightarrow \boldsymbol{R} \cup \boldsymbol{S}=\left(\boldsymbol{r}_{i j} \wedge \boldsymbol{s}_{i j}\right) RSRS=(rijsij)
  • R c = ( 1 − r i j ) R^c=(1-r_{ij}) Rc=(1rij)
  • 包含 R ⊆ S ⇔ ( r i j ) ≤ ( s i j ) \boldsymbol{R} \subseteq \boldsymbol{S} \Leftrightarrow\left(\boldsymbol{r}_{i j}\right) \leq\left(\boldsymbol{s}_{i j}\right) RS(rij)(sij)
  • 相等 R = S ⇔ ( r i j ) = ( s i j ) \boldsymbol{R} = \boldsymbol{S} \Leftrightarrow\left(\boldsymbol{r}_{i j}\right) =\left(\boldsymbol{s}_{i j}\right) R=S(rij)=(sij)

2.2 运算性质

在这里插入图片描述
在这里插入图片描述

2.3 截矩阵

截矩阵的定义为 R λ = ( r i j ( λ ) ) R_\lambda=(r_{ij}(\lambda)) Rλ=(rij(λ)),其中 r i j ( λ ) = I r i j ≥ λ r_{ij}(\lambda)=\mathbb{I}_{r_{ij}\ge\lambda} rij(λ)=Irijλ

Remarks:截矩阵的定义对应着截集的概念,截集得到的是普通集合,响应的截矩阵也是布尔矩阵,完全没有不确定度。

2.4 模糊关系合成

转置:略

模糊乘积:设 Q = ( q i j ) n × m , R = ( r i j ) m × t Q=(q_{ij})_{n\times m},R=(r_{ij})_{m\times t} Q=(qij)n×m,R=(rij)m×t,定义 S = Q R ∈ F n × t S=QR\in\mathcal{F}_{n\times t} S=QRFn×t,有 S i k = ∨ j = 1 m ( q i j ∧ r j k ) S_{ik}=\vee_{j=1}^m(q_{ij}\wedge r_{jk}) Sik=j=1m(qijrjk)

Remarks:模糊乘积实际上表示了两个模糊关系的复合,即 Q ∈ F ( U × V ) , R ∈ F ( V × W ) Q\in\mathcal{F}(U\times V),R\in\mathcal{F}(V\times W) QF(U×V),RF(V×W),最后合成了模糊关系 S ∈ F ( U × W ) S\in\mathcal{F}(U\times W) SF(U×W)。从公式上来看,模糊矩阵的乘积跟普通矩阵的乘积很像,只不过乘法换成了 ∧ \wedge ,加法换成了 ∨ \vee

模糊关系的合成具有以下性质:

在这里插入图片描述

3. 模糊关系性质

3.1 自反性、对称性、传递性

就像普通集合的关系一样,模糊集合有三个重要性质:自反性、对称性、传递性。

自反性:若 ∀ x ∈ U , μ R ( x , x ) = 1 \forall x\in U,\mu_R(x,x)=1 xU,μR(x,x)=1,则称 R R R 满足自反性,相应的有模糊矩阵 I ⊆ R I\subseteq R IR

定理 1:若 A A A 为自反矩阵,则有
I ⊆ A ⊆ A 2 ⊆ ⋯ ⊆ A n ⊆ ⋯ I\subseteq A \subseteq A^2 \subseteq \cdots \subseteq A^n \subseteq \cdots IAA2An
对称性:若 ∀ x , y ∈ U , μ R ( x , y ) = μ R ( y , x ) \forall x,y\in U,\mu_R(x,y)=\mu_R(y,x) x,yU,μR(x,y)=μR(y,x),则称 R R R 满足对称性,相应的有模糊矩阵 R T = R R^T=R RT=R

传递性 μ R ( x , z ) ≥ ∨ y ( μ R ( x , y ) ∧ μ R ( y , z ) ) \mu_R(x,z)\ge\vee_y (\mu_R(x,y)\wedge\mu_R(y,z)) μR(x,z)y(μR(x,y)μR(y,z)),则称 R R R 满足传递性,相应的有模糊矩阵 R 2 ⊆ R R^2\subseteq R R2R

定理 2:若 Q Q Q 为传递矩阵,则有
Q ⊇ Q 2 ⊇ Q 3 ⊇ ⋯ ⊇ Q n − 1 ⊇ Q n ⊇ ⋯ Q \supseteq Q^{2} \supseteq Q^{3} \supseteq \cdots \supseteq Q^{\mathbf{n}-1} \supseteq Q^{\mathbf{n}} \supseteq \cdots QQ2Q3Qn1Qn

3.2 模糊相似关系与等价关系

模糊相似关系 R ∈ F ( U × U ) R\in F(U\times U) RF(U×U),满足自反性和对称性 ⟹ I ⊆ R ⊆ R 2 ⊆ ⋯ ⊆ R n ⊆ ⋯ \Longrightarrow I\subseteq R\subseteq R^2\subseteq \cdots\subseteq R^n\subseteq \cdots IRR2Rn

模糊等价关系 R ∈ F ( U × U ) R\in F(U\times U) RF(U×U),满足自反性、对称性和传递性 ⟹ R = R 2 = ⋯ = R n = ⋯ \Longrightarrow R=R^2=\cdots=R^n=\cdots R=R2==Rn=

定理 R R R 为等价关系    ⟺    R λ \iff R_\lambda Rλ 为等价关系 ∀ λ ∈ [ 0 , 1 ] \forall \lambda\in[0,1] λ[0,1]

Proof:若 R λ R_\lambda Rλ 为等价关系,则意味着 ∀ i , j , k \forall i,j,k i,j,k,若 r i j ( λ ) = 1 , r j k ( λ ) = 1 ⟹ r i k ( λ ) = 1 r_{ij}(\lambda)=1,r_{jk}(\lambda)=1 \Longrightarrow r_{ik}(\lambda)=1 rij(λ)=1,rjk(λ)=1rik(λ)=1。因此对于模糊矩阵来说,应有 r i j ≥ λ , r j k ≥ λ ⟹ r i k ≥ λ r_{ij}\ge\lambda,r_{jk}\ge\lambda \Longrightarrow r_{ik}\ge\lambda rijλ,rjkλrikλ。在此基础上易证充分必要性。

Remarks:这个定理将模糊等价关系转化为普通等价关系,而普通等价关系可以很容易分类。

3.3 对称闭包与传递闭包

对称闭包:设 A , A ^ , B ∈ F ( U × U ) A,\hat{A},B\in\mathcal{F}(U\times U) A,A^,BF(U×U),若 A ⊆ A ^ , A T ⊆ A ^ A\subseteq\hat{A},A^T\subseteq\hat{A} AA^,ATA^,且对任意包含 A A A 的对称关系 B B B,都有 A ^ ⊆ B \hat{A}\subseteq B A^B,则 A ^ \hat{A} A^ A A A 的对称闭包,记为 s ( A ) = A ^ s(A)=\hat{A} s(A)=A^

实际上对称闭包就是包含 A A A最小的对称关系,很容易的有 s ( A ) = A ∪ A T s(A)=A\cup A^T s(A)=AAT

传递闭包 A ⊆ A ^ , A 2 ⊆ A ^ A\subseteq\hat{A},A^2\subseteq\hat{A} AA^,A2A^,且任意包含 A A A 的传递关系 B B B 都有 A ^ ⊆ B \hat{A}\subseteq B A^B,则 A ^ \hat{A} A^ A A A 的传递闭包,记为 t ( A ) = A ^ t(A)=\hat{A} t(A)=A^

传递闭包定理 1 t ( A ) = A ∪ A 2 ∪ ⋯ ∪ A n ∪ ⋯ = ⋃ k = 1 ∞ A k t(A)=A\cup A^2 \cup\cdots\cup A^n\cup\cdots=\bigcup_{k=1}^\infty A^k t(A)=AA2An=k=1Ak

传递闭包定理 2 t ( A ) = ⋃ k = 1 n A k t(A)=\bigcup_{k=1}^n A^k t(A)=k=1nAk (可以使用鸽巢原理,证明 A n + 1 ⊆ A m , m ≤ n A^{n+1}\subseteq A^m,m\le n An+1Am,mn

传递闭包定理 3:相似矩阵 R ∈ U n × n R\in U_{n\times n} RUn×n 的传递闭包是等价矩阵,且 t ( R ) = R n t(R)=R^n t(R)=Rn

传递闭包定理 4:相似矩阵 R ∈ U n × n R\in U_{n\times n} RUn×n,则 ∀ m ≥ n , t ( R ) = R m \forall m\ge n,t(R)=R^m mn,t(R)=Rm

传递闭包定理 5:相似矩阵 R ∈ U n × n R\in U_{n\times n} RUn×n,则 ∃ k ≤ n , t ( R ) = R k \exist k\le n,t(R)=R^k kn,t(R)=Rk

Remarks

  • 定理 2 证明了传递闭包在实际中是可计算的
  • 定理 3-5 中对相似矩阵求传递闭包就得到了等价矩阵,对后面的模糊据类很有用,因为模糊等价矩阵可以与普通等价矩阵联系起来,而若想进行分类,则必须依托于等价关系。
  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值