DeepSpeed是一个由微软开发的深度学习优化库,旨在提高大规模模型训练和推理的效率。它包含四个主要创新支柱,每个支柱都针对深度学习领域中不同的挑战和需求:
- DeepSpeed-Training:
- DeepSpeed-Training集中了多种系统创新,使得大规模深度学习训练变得有效和高效。这些创新包括:
- ZeRO (Zero Redundancy Optimizer):一种优化技术,通过消除模型参数和梯度的冗余存储来减少内存使用。
- 3D-Parallelism:结合了张量并行、管道并行和专家并行,以实现模型在多个维度上的并行训练。
- DeepSpeed-MoE (Mixture of Experts):一种用于训练具有大量专家的模型的技术,可以提高模型的容量和效率。
- ZeRO-Infinity:ZeRO的扩展,旨在进一步减少内存占用,允许训练超出单个节点内存容量的模型。
- 这些技术共同构成了DeepSpeed的训练支柱,重新定义了大规模深度学习训练的可能性。
- DeepSpeed-Training集中了多种系统创新,使得大规模深度学习训练变得有效和高效。这些创新包括:
- DeepSpeed-Inference:
- DeepSpeed-Inference集中了多种并行技术,如张量并行、管道并行、专家并行和ZeRO-并行,并结合了高性能的自定义推理内核、通信优化和异构内存技术,以实现前所未有的规模推理。这些技术的系统组合构成了DeepSpeed的推理支柱,旨在实现低延迟、高吞吐量和成本降低。
- DeepSpeed-Compression:
- 为了进一步提高推理效率,DeepSpeed提供了易于使用且灵活组合的压缩技术,供研究人员和实践者压缩他们的模型,同时实现更快的速度、更小的模型尺寸和显著降低的压缩成本。此外,该支柱还包括了像ZeroQuant和XTC这样的压缩领域的前沿创新。
- DeepSpeed4Science:
- DeepSpeed4Science是微软DeepSpeed团队发起的一项新倡议,旨在通过AI系统技术创新为领域专家提供独特的工具和能力,以解决人类面临的最紧迫的科学挑战。这个支柱体现了微软利用AI技术解决重大科学问题的使命。
总的来说,DeepSpeed的四个创新支柱分别针对深度学习训练的高效性、大规模推理的优化、模型压缩的改进以及科学研究的支持,共同推动了深度学习技术的发展和应用。
- DeepSpeed4Science是微软DeepSpeed团队发起的一项新倡议,旨在通过AI系统技术创新为领域专家提供独特的工具和能力,以解决人类面临的最紧迫的科学挑战。这个支柱体现了微软利用AI技术解决重大科学问题的使命。