scipy,weibull_min中文翻译(也就是一般的weibull分布,可以通过改变参数设置为三参数或者两参数。)

scipy.stats.weibull_min

scipy.stats.weibull_min(* args,** kwds )= <scipy.stats._continuous_distns.weibull_max_gen object>源码
威布尔最小连续随机变量。

作为rv_continuous类的实例,weibull_max继承了这个类的一切通用方法(请参见下面的完整列表),并使用此分布的公式来完善它们。

也可以看看
weibull_min

笔记

weibull_max的概率密度函数为:
f ( x , c ) = c ( x ) c − 1 e − ( x ) c f(x,c)=c(x)^{c-1}e^{-(x)^c} f(x,c)=c(x)c1e(x)c

x<0,c>0。
weibull_max采取c作为形状参数。

以上的概率密度以“标准化”形式定义。要移动和/或缩放分布,请使用loc和scale参数。具体而言,weibull_min.pdf(x, c, loc, scale)相当于用 weibull_min.pdf(y, c) / scale,其中y = (x - loc) / scale

译者注:原文中公式如此,但是以上的公式可能与我们常见的weibull分布的pdf形式不同(以下为三参数):
f ( t ) = β η ( T − γ η ) β − 1 e − ( T − γ η ) β f(t)=\frac{\beta}{\eta}(\frac{T-\gamma}{\eta})^{\beta-1}e^{-(\frac{T-\gamma}{\eta})^\beta} f(t)=ηβ(ηTγ)β1e(ηTγ)β
其 中 T , β , η 都 是 大 于 0 的 其中T,\beta,\eta都是大于0的 T,β,η0
如果直接用loc和scale换进去,看上去可能成这个样子:
f ( t ) = c ( T − l o c s c a l e ) c − 1 e − ( T − l o c s c a l e ) c f(t)=c(\frac{T-loc}{scale})^{c-1}e^{-(\frac{T-loc}{scale})^c} f(t)=c(scaleTloc)c1e(scaleTloc)c
公式前的c没有除以尺度参数scale,看上去不对劲。不过,实际情况并不是这样。
真正将y替换为(x-loc)/scale只是在累积分布函数cdf中发生的,而pdf则是相当于对替换完的cdf求了个导数。因此当实际运行的时候,cdf的公式变成了这样:
F ( t ) = e − ( x − l o c s c a l e ) c F(t)=e^{-(\frac{x-loc}{scale})^c} F(t)=e(scalexloc)c
pdf它的公式则是cdf的导数,是这样的:
f ( t ) = c s c a l e ( T − l o c s c a l e ) c − 1 e − ( T − l o c s c a l e ) c f(t)=\frac{c}{scale}(\frac{T-loc}{scale})^{c-1}e^{-(\frac{T-loc}{scale})^c} f(t)=scalec(scaleTloc)c1e(scaleTloc)c
我们可以做个试验验证一下:
运行以下代码:

from scipy.stats import weibull_min
import matplotlib.pyplot as plt
import numpy as np
c = 1.79
x = np.linspace(0,
5, 100)
scale=3# 设置尺度参数为3
plt.plot(x, weibull_min.pdf(x, c,scale=scale),
‘r-’, lw=5, alpha=0.6, label=‘weibull_min pdf’)# 调用weibull_main绘制,红线
rv = weibull_min( c )
plt.plot(x, c/scale*(x/scale)**(c-1)*np.e**(-(x/scale)**c),
‘k-’, lw=2, label=‘pdf formula’)# 按照pdf公式绘制,黑线
plt.legend(loc=‘best’, frameon=False)
plt.show()

由此我们可以得到如下的拟合图像:
在这里插入图片描述
可以看出其中的pdf是正确的,与pdf公式得到的结果完全吻合。

例子

>>> from scipy.stats import weibull_min
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

首先计算一下:

>>> c = 1.79
>>> mean, var, skew, kurt = weibull_min.stats(c, moments='mvsk')

绘制概率密度函数(pdf):

>>> x = np.linspace(weibull_min.ppf(0.01, c),
...                 weibull_min.ppf(0.99, c), 100)
>>> ax.plot(x, weibull_min.pdf(x, c),
...        'r-', lw=5, alpha=0.6, label='weibull_min pdf')

或者,可以调用分布对象(作为函数)以固定形状,位置和比例参数。这将返回一个“冻结的” RV对象,该对象固定了给定的参数。

冻结分布并显示冻结的pdf:

>>> rv = weibull_min(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
检查cdf和的准确性ppf:
>>> vals = weibull_min.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], weibull_min.cdf(vals, c))
True

生成随机数:

>>> r = weibull_min.rvs(c, size=1000)

并比较直方图:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

方法

方法用途
rvs(c,loc = 0,scale = 1,size = 1,random_state = None)随机变量生成。
pdf(x,c,loc = 0,scale = 1)概率密度函数。
logpdf(x,c,loc = 0,scale = 1)概率密度函数的对数。
cdf(x,c,loc = 0,scale = 1)累积分布函数。
logcdf(x,c,loc = 0,scale = 1)累积分布函数的日志。
sf(x,c,loc = 0,scale = 1)生存函数(也定义为1-cdf,但sf有时更准确)
logsf(x,c,loc = 0,scale = 1)生存函数的对数。
ppf(q,c,loc = 0,scale = 1)百分比点函数(与cdf—百分位数相反)
isf(q,c,loc = 0,scale = 1)逆生存函数(的逆sf)
moment(n,c,loc = 0,scale = 1)n阶非中心矩
stats(c,loc = 0,scale = 1,moments =‘mv’)均值(‘m’),方差(‘v’),偏斜(‘s’)和/或峰度(‘k’)。
entropy(c,loc = 0,scale = 1)RV的(微分)熵。
fit(data,C,loc= 0,scale= 1)通用数据的参数估计。
expect(func,args =(c,),loc = 0,scale = 1,lb = None,ub = None,conditional= False,** kwds)函数(单参数)相对于分布的期望值。
median(c,loc = 0,scale = 1)分布的中位数。
mean(c,loc = 0,scale = 1)分布的平均值。
var(c,loc = 0,scale = 1)分布的方差。
std(c,loc = 0,scale = 1)分布的标准偏差。
interval(alpha,c,loc = 0,scale = 1)包含分布的Alpha百分比的范围的端点
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值