广义特征向量
如果f不等于0,且存在某个正整数m使得:则称f是A的相对于特征值a的广义特征向量
对比特征值和特征向量:矩阵A的特征值为λ,特征向量为u。即(A-λ) u = 0
协方差和协方差矩阵
参考https://www.cnblogs.com/terencezhou/p/6235974.html
协方差
(1)随机变量的协方差。跟数学期望、方差一样,是分布的一个总体参数。
(2)样本的协方差。是样本集的一个统计量,可作为联合分布总体参数的一个估计。在实际中计算的通常是样本的协方差。
随机变量的协方差
在概率论和统计中,协方差是对两个随机变量联合分布线性相关程度的一种度量。两个随机变量越线性相关,协方差越大,完全线性无关,协方差为零。定义如下:
当X,Y是同一个随机变量时,X与其自身的协方差就是X的方差,可以说方差是协方差的一个特例。
由于随机变量的取值范围不同,两个协方差不具备可比性。如X,Y,Z分别是三个随机变量,想要比较X与Y的线性相关程度强,还是X与Z的线性相关程度强,通过cov(X,Y)与cov(X,Z)无法直接比较。定义相关系数η为
通过X的方差var(X)与Y的方差var(Y)对协方差cov(X,Y)归一化,得到相关系数η,η的取值范围是[−1,1]。1表示完全线性相关,−1表示完全线性负相关,0表示线性无关。线性无关并不代表完全无关,更不代表相互独立。
样本的协方差
协方差矩阵
多维随机变量的协方差矩阵
对多维随机变量X=[X1,X2,X3,…,Xn]T,我们往往需要计算各维度两两之间的协方差,这样各协方差组成了一个n×n的矩阵,称为协方差矩阵。协方差矩阵是个对称矩阵,对角线上的元素是各维度上随机变量的方差。我们定义协方差矩阵为Σ,这个符号与求和∑相同,需要根据上下文区分。矩阵内的元素Σij为
样本的协方差矩阵
与上面的协方差矩阵相同,只是矩阵内各元素以样本的协方差替换。样本集合为{x⋅j=[x1j,x2j,…,xnj]T|1⩽j⩽m},m为样本数量,所有样本可以表示成一个n×m的矩阵。我们以Σ^表示样本的协方差矩阵,与Σ区分。
公式中m为样本数量,x¯为样本的均值,是一个列向量,x⋅j为第j个样本,也是一个列向量。
在写程序计算样本的协方差矩阵时,我们通常用后一种向量形式计算。一个原因是代码更紧凑清晰,另一个原因是计算机对矩阵及向量运算有大量的优化,效率高于在代码中计算每个元素。
需要注意的是,协方差矩阵是计算样本不同维度之间的协方差,而不是对不同样本计算,所以协方差矩阵的大小与维度相同。
很多时候我们只关注不同维度间的线性关系,且要求这种线性关系可以互相比较。所以,在计算协方差矩阵之前,通常会对样本进行归一化,包括两部分: