向量范数形式
∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p \Vert \boldsymbol{x} \Vert_p =(\sum_{i=1}^{n}\left|x_i\right|^p)^{\frac{1}{p}} ∥x∥p=(i=1∑n∣xi∣p)p1
p>=1
当
p
≥
1
p\ge 1
p≥1,则
∥
x
+
y
∥
p
≤
∥
x
∥
p
+
∥
y
∥
p
\Vert \boldsymbol{x}+\boldsymbol{y} \Vert_p \le \Vert \boldsymbol{x} \Vert_p +\Vert \boldsymbol{y} \Vert_p
∥x+y∥p≤∥x∥p+∥y∥p
其实等价于证明p范数是一个向量范数
证明:
p
=
1
p=1
p=1时,由三角不等式,显然成立
p
>
1
p>1
p>1
设
q
=
p
p
−
1
>
1
q=\frac{p}{p-1}>1
q=p−1p>1
∑
i
=
1
n
∣
x
i
+
y
i
∣
p
=
∑
i
=
1
n
∣
x
i
+
y
i
∣
∣
x
i
+
y
i
∣
p
−
1
≤
∑
i
=
1
n
(
∣
x
i
∣
+
∣
y
i
∣
)
∣
x
i
+
y
i
∣
p
−
1
=
∑
i
=
1
n
∣
x
i
∣
∣
x
i
+
y
i
∣
p
−
1
+
∑
i
=
1
n
∣
y
i
∣
∣
x
i
+
y
i
∣
p
−
1
≤
(
∑
i
=
1
n
∣
x
i
∣
p
)
1
p
(
∑
i
=
1
n
∣
x
i
+
y
i
∣
(
p
−
1
)
q
)
1
q
+
(
∑
i
=
1
n
∣
y
i
∣
p
)
1
p
(
∑
i
=
1
n
∣
x
i
+
y
i
∣
(
p
−
1
)
q
)
1
q
=
(
(
∑
i
=
1
n
∣
x
i
∣
p
)
1
p
+
(
∑
i
=
1
n
∣
y
i
∣
p
)
1
p
)
(
∑
i
=
1
n
∣
x
i
+
y
i
∣
p
)
1
q
=
(
∥
x
∥
p
+
∥
y
∥
p
)
(
∑
i
=
1
n
∣
x
i
+
y
i
∣
p
)
1
q
\begin{aligned} &\quad \sum_{i=1}^{n}\left|x_i+y_i \right|^p\\ &=\sum_{i=1}^{n}\left|x_i+y_i\right| \left|x_i+y_i\right|^{p-1}\\ &\le \sum_{i=1}^{n}(\left|x_i\right|+\left|y_i\right|) \left|x_i+y_i\right|^{p-1}\\ &= \sum_{i=1}^{n}\left|x_i\right| \left|x_i+y_i\right|^{p-1}+\sum_{i=1}^{n}\left|y_i\right| \left|x_i+y_i\right|^{p-1}\\ &\le (\sum_{i=1}^{n} \left|x_i \right|^p)^{\frac{1}{p}}(\sum_{i=1}^{n} \left|x_i +y_i\right|^{(p-1)q})^{\frac{1}{q}}\\ &\quad + (\sum_{i=1}^{n} \left|y_i \right|^p)^{\frac{1}{p}}(\sum_{i=1}^{n} \left|x_i +y_i\right|^{(p-1)q})^{\frac{1}{q}}\\ &=((\sum_{i=1}^{n} \left|x_i \right|^p)^{\frac{1}{p}}+(\sum_{i=1}^{n} \left|y_i \right|^p)^{\frac{1}{p}})(\sum_{i=1}^{n} \left|x_i +y_i\right|^{p})^{\frac{1}{q}}\\ &=( \Vert \boldsymbol{x} \Vert_p +\Vert \boldsymbol{y} \Vert_p)(\sum_{i=1}^{n} \left|x_i +y_i\right|^{p})^{\frac{1}{q}} \end{aligned}
i=1∑n∣xi+yi∣p=i=1∑n∣xi+yi∣∣xi+yi∣p−1≤i=1∑n(∣xi∣+∣yi∣)∣xi+yi∣p−1=i=1∑n∣xi∣∣xi+yi∣p−1+i=1∑n∣yi∣∣xi+yi∣p−1≤(i=1∑n∣xi∣p)p1(i=1∑n∣xi+yi∣(p−1)q)q1+(i=1∑n∣yi∣p)p1(i=1∑n∣xi+yi∣(p−1)q)q1=((i=1∑n∣xi∣p)p1+(i=1∑n∣yi∣p)p1)(i=1∑n∣xi+yi∣p)q1=(∥x∥p+∥y∥p)(i=1∑n∣xi+yi∣p)q1
其中最后一个小于等于号用的Holder不等式
观察首尾
⇒
∥
x
+
y
∥
p
≤
∥
x
∥
p
+
∥
y
∥
p
\Rightarrow \Vert \boldsymbol{x}+\boldsymbol{y} \Vert_p \le \Vert \boldsymbol{x} \Vert_p +\Vert \boldsymbol{y} \Vert_p
⇒∥x+y∥p≤∥x∥p+∥y∥p
0<p<1
当
p
≥
1
,
x
i
,
y
i
>
0
p\ge 1,x_i,y_i>0
p≥1,xi,yi>0,则
∥
x
+
y
∥
p
≥
∥
x
∥
p
+
∥
y
∥
p
\Vert \boldsymbol{x}+\boldsymbol{y} \Vert_p \ge \Vert \boldsymbol{x} \Vert_p +\Vert \boldsymbol{y} \Vert_p
∥x+y∥p≥∥x∥p+∥y∥p
f
(
x
)
=
x
p
f(x)=x^p
f(x)=xp
f
′
′
(
x
)
=
p
(
p
−
1
)
x
p
−
2
<
0
f''(x)=p(p-1)x^{p-2}<0
f′′(x)=p(p−1)xp−2<0
由Jensen不等式
∑
i
=
1
n
(
x
i
+
y
i
)
p
=
∑
i
=
1
n
(
t
x
i
t
+
(
1
−
t
)
y
i
1
−
t
)
p
≥
t
∑
i
=
1
n
(
(
x
i
t
)
p
+
(
1
−
t
)
∑
i
=
1
n
(
y
i
1
−
t
)
p
)
=
t
1
−
p
∑
i
=
1
n
x
i
p
+
(
1
−
t
)
1
−
p
∑
i
=
1
n
y
i
p
=
t
1
−
p
∥
x
∥
p
p
+
(
1
−
t
)
1
−
p
∥
y
∥
p
p
=
(
∥
x
∥
p
∥
x
∥
p
+
∥
y
∥
p
)
1
−
p
∥
x
∥
p
p
+
(
1
−
∥
x
∥
p
∥
x
∥
p
+
∥
y
∥
p
)
1
−
p
∥
y
∥
p
p
=
(
∥
x
∥
p
+
∥
y
∥
p
)
p
\begin{aligned} \sum_{i=1}^{n}(x_i+y_i)^p &= \sum_{i=1}^{n}(t\frac{x_i}{t}+(1-t)\frac{y_i}{1-t})^p\\ &\ge t\sum_{i=1}^{n}((\frac{x_i}{t})^p+(1-t)\sum_{i=1}^{n}(\frac{y_i}{1-t})^p)\\ &= t^{1-p}\sum_{i=1}^{n}x_i^p+(1-t)^{1-p}\sum_{i=1}^{n}y_i^p\\ &=t^{1-p}\Vert \boldsymbol{x}\Vert_p^p +(1-t)^{1-p}\Vert \boldsymbol{y}\Vert_p^p\\ &=(\frac{\Vert \boldsymbol{x}\Vert_p}{\Vert \boldsymbol{x}\Vert_p+\Vert \boldsymbol{y}\Vert_p})^{1-p}\Vert \boldsymbol{x}\Vert_p^p \\&\quad +(1-\frac{\Vert \boldsymbol{x}\Vert_p}{\Vert \boldsymbol{x}\Vert_p+\Vert \boldsymbol{y}\Vert_p})^{1-p}\Vert \boldsymbol{y}\Vert_p^p\\ &=(\Vert \boldsymbol{x}\Vert_p+\Vert \boldsymbol{y}\Vert_p)^p \end{aligned}
i=1∑n(xi+yi)p=i=1∑n(ttxi+(1−t)1−tyi)p≥ti=1∑n((txi)p+(1−t)i=1∑n(1−tyi)p)=t1−pi=1∑nxip+(1−t)1−pi=1∑nyip=t1−p∥x∥pp+(1−t)1−p∥y∥pp=(∥x∥p+∥y∥p∥x∥p)1−p∥x∥pp+(1−∥x∥p+∥y∥p∥x∥p)1−p∥y∥pp=(∥x∥p+∥y∥p)p
⇒
∥
x
+
y
∥
p
≥
∥
x
∥
p
+
∥
y
∥
p
\Rightarrow \Vert \boldsymbol{x+y}\Vert_p\ge \Vert \boldsymbol{x}\Vert_p+\Vert \boldsymbol{y}\Vert_p
⇒∥x+y∥p≥∥x∥p+∥y∥p