PSMNet训练中遇到的报错

在使用finetune.py训练PSMNet时,针对KITTI数据集进行300 epochs的训练,修改了预训练模型路径后,遇到import错误和CUDA内存超限问题。通过调整为'dataloader.preprocess'导入预处理模块,并通过杀掉GPU占用进程解决CUDA内存问题。在调整batchsize从3到更小值的过程中,解决了训练报错,最终设定batchsize为3成功运行。
摘要由CSDN通过智能技术生成

1.main.py是训练10 epochs的sceneflow的例子。
2.finetune.py是训练300 epochs的KITTI的例子。只跑了这个例子

  • 首先修改了 finetune.py的路径,把KITTI路径和预训练模型加载进来。
parser.add_argument('--datapath', default='./data_scene_flow_2015/training/',
                    help='datapath')
parser.add_argument('--epochs', type=int, default=300,
                    help='number o
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值