多模态数据标注是一项复杂而重要的工作,以下为你介绍多模态数据标注的方法。
在医疗行为多模态数据标注中,首先进行数据采集,采集医疗行为多模态数据;然后进行初始化,对数据进行清洗,获取未标注空白数据,并初始化多模态数据自动标注模型;接着进行模型训练,基于未标注空白数据构建待标注多模态数据,载入模型获得自动标注数据,对其进行复核检验以训练模型;最后采用训练后的模型对待标注多模态数据进行自动标注。
对于自媒体平台中医药多模态语料库的构建,标注工作包括采集微信、微博、抖音等自媒体平台上与中医药相关的视频内容,设定共计 24 个标注层级,对视频文件的音频生成后导入 ELAN 软件进行人工视频标注,选用迅捷语音转文字软件进行语音文件转写,并对语料库中文本进行多项特性的系统性标记。
在多模态数据标注中,还可以采用以下方法。获取不同格式的多模态图像进行预处理,得到音频数据和视频数据,分别对音频数据和视频数据进行特征提取,基于神经网络模型对特征数据进行处理得到目标对象及其情绪特征数据,根据这些对多模态图像进行标注并将标注结果等进行可视化处理。
另外,可将图像分割数据集的标注过程分为检测和分割两个过程,首先使用检测模型对 ImageNet 图像数据进行检测定位确定目标区域,然后对目标区域利用预设图像分割算法进行小范围 mask 标记得到标注数据信息。还可以通过将无标签的多模态数据基于跨模态和跨时空的注意力机制进行融合,得到统一的多模态特征,实现多模态数据在空间和时间上的交互以进行标注。
在视频标注方面,可将视频第一帧作为第一类计算颜色直方图得到质心,然后计算下一帧与当前所有类质心的距离进行分类,最后从每个类中抽取一帧构成关键帧,对提取到的关键帧特征进行时序建模生成视觉特征。也可以通过对视频中的画面成分进行人脸识别和对音频成分进行分析,综合进行关于视频中说话人说话状态和/或说话起始点信息的标注。
对于图像、视频等多模态数据标注,还可以使用标注工具如 Label Studio,它支持图像、文本、超文本、音频、视频以及时间序列数据的标注,其核心技术栈包括 Python 和 Qt,标注格式支持多种格式,安装选项丰富。同时,标注过程应遵循一定的标准和规范,保证标注的准确性和一致性,可以通过双重标注、标注者培训和质量审核等方式进行标注质量控制ÿ