物理信息神经网络(PINNs)在处理高维偏微分方程中的具体应用案例有哪些?

物理信息神经网络(Physics-Informed Neural Networks, PINNs)在处理高维偏微分方程(PDEs)中的具体应用案例涵盖了多个领域和问题类型。以下是几个典型的应用案例:

  1. 核反应堆动力学问题
    PINNs被用于解决核反应堆中的点动能方程(Point Kinetic Equations, PKEs),特别是在温度反馈和中子源的六组延迟中子密度浓度问题上。研究表明,PINNs能够提供较小的预测误差和较快的运行时间,尽管计算时间对于实时应用可能过长。

  2. 流体动力学中的Navier-Stokes方程
    PINNs已被成功应用于Navier-Stokes方程的求解,包括稳态和非稳态情况。例如,PINNs可以用于模拟二维和三维流体流动,处理复杂的边界条件和非线性特性。这些方法在流体力学、湍流等领域展现了高效性和准确性。

  3. 热传导方程
    在热传导问题中,PINNs通过将初始条件、边界条件和PDE残差嵌入到神经网络的损失函数中,有效地逼近解。例如,研究者使用PINNs求解了一维热传导方程,并展示了其在处理高维问题时的有效性。

  4. 随机波动方程
    PINNs还被用于求解随机波动方程,如地震波传播问题。EikoNet是一种基于PINNs的方法,用于预测地震波传播路径上的超前信息,其精度优于传统的快速扫描方法。

  5. 高维扩散反应方程
    PINNs被用于解决高维扩散反应方程,通过增加采样点数量来提高训练效果和加速训练速

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值