物理信息神经网络(Physics-Informed Neural Networks, PINNs)在处理高维偏微分方程(PDEs)中的具体应用案例涵盖了多个领域和问题类型。以下是几个典型的应用案例:
-
核反应堆动力学问题:
PINNs被用于解决核反应堆中的点动能方程(Point Kinetic Equations, PKEs),特别是在温度反馈和中子源的六组延迟中子密度浓度问题上。研究表明,PINNs能够提供较小的预测误差和较快的运行时间,尽管计算时间对于实时应用可能过长。 -
流体动力学中的Navier-Stokes方程:
PINNs已被成功应用于Navier-Stokes方程的求解,包括稳态和非稳态情况。例如,PINNs可以用于模拟二维和三维流体流动,处理复杂的边界条件和非线性特性。这些方法在流体力学、湍流等领域展现了高效性和准确性。 -
热传导方程:
在热传导问题中,PINNs通过将初始条件、边界条件和PDE残差嵌入到神经网络的损失函数中,有效地逼近解。例如,研究者使用PINNs求解了一维热传导方程,并展示了其在处理高维问题时的有效性。 -
随机波动方程:
PINNs还被用于求解随机波动方程,如地震波传播问题。EikoNet是一种基于PINNs的方法,用于预测地震波传播路径上的超前信息,其精度优于传统的快速扫描方法。 -
高维扩散反应方程:
PINNs被用于解决高维扩散反应方程,通过增加采样点数量来提高训练效果和加速训练速