Huggingface 研究人员旨在打造 OpenAI deep research 工具的 “open“ 版本

包括公司联合创始人兼首席科学家托马斯-沃尔夫(Thomas Wolf)在内的一群人工智能开发平台 "Hugging Face"的开发人员表示,他们已经构建了一个 “开放” 版的 OpenAI deep research 工具。

在这里插入图片描述

OpenAI 在周日的一次活动中公布了深度研究(Deep Research)功能,它可以通过抓取网络来编译有关任何主题的研究报告。 虽然深度研究给人留下了深刻印象,但目前只有订阅 OpenAI 月费 200 美元的 ChatGPT Pro 计划的用户可以有限地预览深度研究。

Hugging Face 团队的项目被称为 “开放深度研究”(Open Deep Research),由一个人工智能模型(OpenAI 的 o1)和一个开源的 “代理框架”(agentic framework)组成,后者可以帮助该模型规划分析,并指导它使用搜索引擎等工具。 O1 是一个专有模型(即通过付费 API 获取),但该团队表示,它比 DeepSeek 的 R1 等 “开放” 模型性能更好。

在不到 24 小时的时间里,研究人员就能利用 o1,使用一个简单的基于文本的浏览器和一个 “文本检查器” 工具包来读取网络上的文件。 研究小组表示,“开放式深度研究” 可以自主浏览网络,滚动浏览网页,操作文件,甚至利用数据进行计算。

在通用人工智能助手基准 GAIA 上,Open Deep Research 的得分率为 54%。 而 OpenAI 深度研究的得分率为 67.36%。

我在团队设置的公开演示中尝试了 “开放式深度研究”,但无法正常运行。 发布时页面负载很重;10 分钟后,它吐出了一条错误信息。

在这里插入图片描述

但研究人员表示,他们致力于改善体验,并在 GitHub 上提供了源代码,以供检查和反馈。

值得注意的是,网络上有许多 OpenAI 深度研究的 “复制品”,其中一些依赖于开放模型和工具。 它们和 "开放深度研究 "所缺乏的关键要素是o3,即深度研究的基础模型。

在与回答复杂问题和收集信息相关的基准测试中,很少有模型(如果有的话)能击败 o3。 如果没有可与 o3 相媲美的开放模型,深度研究替代方案可能无法与真正的 o3 相媲美。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值