命题6 悖论式陈述 PM不可判定命题,和哥德尔可表达性定理——哥德尔读后之十八
开始命题六,也就是哥德尔第一不完全性定理的阅读了,但似乎离这个著名定理,还有那么一丁点的距离。于是本篇依然是交代命题6证明前的那些必不可少的证明铺垫。
一、哥德尔命题6,即第一不完全性定理的两个版本表达
在预设了c为任意公式类及其相关条件,并且给出一致性观念之后,命题6(VI)即对后世影响深远的哥德尔第一不完全性定理出场了。
(依据1962年英译本)
这个有关不可判定命题存在的一般性结果读作命题6:
命题6:
对于每一个一致性的递归类公式c,都存在对应的递归类符号r,使得无论是对于v一般化r还是对于并非v一般化r,它们都不属于Flg©。其中,v是r的自由变元。((这里的一般化是德语缩写Gen,v一般化r的符号在1962英译本中表示为v Gen r。并非v 一般化 r,则表示为Neg(v Gen r)。而这里的后承集合是德语缩写Flg,后承集合c在1962英译本中表示为Flg©,请注意字体的不同。))
(而依据2000年英译本)
这个有关不可判定命题存在的一般性结果展示如下:
命题6:
对于每一个一致性的原始递归类公式k,都存在一个原始递归类符号r,使得无论是对于所有的v,r,即forall(v,r),还是对于并非所有的v,r,即not(forall(v,r)),它们都不属于conseq(k)。(其中,v是r的自由变元)。
二、重温编号(1)-(4)
这两个版本有关命题6的描述好像没有什么差别,版本其它内容的对照也就没有什么必要了。这个命题6的哥德尔证明过程真还有点复杂悠长,在前有四个公式作为命题6证明的铺垫,证明则从公式(5)开始,一环扣一环地前行,一直到公式(16),才使得命题6得证。
既然哥德尔这样来为他的命题6的依据排序,重温一下他在编号(5)之前的前四个编号(1)-(4),应该是一件有意义的事情。
那么这个标号为(5)的公式,为什么要这样来编码呢?这让阅读者很自然地又把目光折回到前面的文字,寻找这个编号(5)前面的那四个东西,看看这前面的四个公式和这个命题6证明究竟是个什么关联。
(一)从编号为(1)、类似悖论的表达式起步
我们浏览命题6的字符旅行,由此也就从他的第一个编号,编号(1)开始。
旅程