多模态本地部署和ollama部署Llama-Vision实现视觉问答

一、模型介绍

Llama 3.2-Vision 是一系列多模态大语言模型(LLM),包括预训练和指令调优的图像推理生成模型大小分别为11B和90B(输入为文本+图像/输出为文本)。Lama 3.2-Vision 指令调优模型针对视觉识别、图像推理、字幕生成以及回答关于图像的一般问题进行了优化。这些模型在常见的行业基准测试中表现优于许多可用的开源和闭源多模态模型,
模型开发者: Meta
模型架构: Llama 3.2-Vision 基于 Lama 3.1 文本模型构建,后者是一个使用优化的Transformer架构的自回归语言模型。调优版本使用有监督的微调(SFT)和基于人类反馈的强化学习(RLHF)来与人类对有用性和安全性的偏好保持一致。为了支持图像识别任务,Llama 3.2-Vision 模型使用了单独训练的视觉适配器,该适配器与预训练的 Llama 3.1 语言模型集成。适配器由一系列交叉注意力层组成,将图像编码器表示传递给核心LLM。
支持的语言:对于纯文本任务,官方支持英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。Llama3.2的训练数据集包含了比这八种语言更广泛的语言。注意,对于图像+文本应用,仅支持英语。
开发者可以在遵守 Llama 3.2 社区许可证和可接受使用政策的前提下,对 Lama 3.2 模型进行其他语言的微调。开发者始终应确保其部署,包括涉及额外语言的部署,是安全且负责任的。
模型发布日期:2024年9月25日
在这里插入图片描述

二、预期用途

预期用途案例: Llama 3.2-Vision旨在用于商业和研究用途。经过指令调优的模型适用于视觉识别、图像推理、字幕添加以及带有图像的助手式聊天,而预训练模型可以适应多种图像推理任务。此外,由于Llama 3.2-Vision能够接受图像和文本作为输入,因此还可能包括以下用途:

1. 视觉问答(VQA)与视觉推理

想象一台机器能够査看图片并理解您对其提出的问题。

2. 文档视觉问答(DocVQA)

想象计算机能够理解文档(如地图或合同)中的文本和布局,并直接从图像中回答问题。

3. 图像字幕

图像字幕架起了视觉与语言之间的桥梁,提取细节,理解场景,然后构造一两句讲述故事的话。

4. 图像-文本检索

图像-文本检索就像是为图像及其描述做媒人。类似于搜索引擎,但这种引擎既理解图片也理解文字。

5. 视觉接地

视觉接地就像将我们所见与所说连接起来。它关乎于理解语言如何引用图像中的特定部分,允许AI模型基于自然语言描述来精确定位对象或区域。

三、本地部署

1. 下载模型

#模型下载 
from modelscope import snapshot_download model_dir = snapshot_download('AI-ModelScope/Llama-3.2-11B-Vision-Instruct-GGUF')

2. 模型大小

在这里插入图片描述

3. 运行代码

在运行代码前先确保安装了transformers包
pip install --upgrade transformers

import requests
import torch
from
### Ollama多模态大模型部署教程 #### 工具准备 为了顺利部署Ollama多模态大模型,需要先准备好相应的环境。确保`ollama`版本不低于0.4.0,这可以通过命令`curl -fsSL https://ollama.com/install.sh | sh`来完成安装操作[^1]。 #### 版本确认 安装完成后,应当验证安装是否成功以及所使用的`ollama`具体版本号,此步骤可通过执行`ollama --version`指令达成目的[^3]。 #### 模型选择与启动 对于希望快速体验视觉问答功能的用户而言,可以直接选用已经集成好的Llama-Vision模型。仅需一条简单的命令即可让该模型在线并投入使用:`ollama run llama-vision`。这一过程不仅简化了传统意义上复杂的配置流程,还极大地提高了效率,因为所有必要的依赖项都会被自动处理完毕。 #### BakLLaVA的具体应用案例 如果目标是构建更为复杂的应用场景,则可以考虑采用BakLLaVA这款强大的多模态语言模型。其卓越之处在于能够提供高质量的文字生成服务的同时,在图像描述、语音识别等多个领域也有着不俗的表现。值得注意的是,由于它是开源性质的产品,因此可以根据实际需求灵活调整参数设置或是进一步优化现有框架结构[^2]。 ```bash # 安装ollama $ curl -fsSL https://ollama.com/install.sh | sh # 查看ollama版本 $ ollama --version # 启动Llama-Vision模型 $ ollama run llama-vision # 使用bakllava模型 $ ollama run bakllava ``` #### 最佳实践建议 - **保持更新**:定期关注官方发布的最新消息技术文档,及时升级至新版本以获得更好的性能支持。 - **合理规划资源**:根据不同任务的特点分配合适的硬件资源(如GPU),从而达到最佳性价比。 - **积极参与社区交流**:利用论坛或社交媒体平台分享经验心得,共同促进技术进步发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值