Llama 3.2-Vision 多模态大模型本地运行教程

Ollama 刚刚放出了对 Llama 3.2-Vision 的支持!这让人想起了新游戏发布带来的兴奋感——我期待着探索 Ollama 对 Llama 3.2-Vision 的支持。该模型不仅在自然语言理解方面表现出色,而且可以无缝处理图像,最好的部分是什么?它是免费的,专为边缘 AI 设计。

在这篇文章中,我将指导你将 Ollama 升级到 0.4.0 版,提供一个动手演示来帮助你在系统上运行 Llama 3.2-Vision,并讨论该模型的特殊之处以及它如何有可能彻底改变边缘 AI。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 

Llama 3.2-vision 是一个基于Llama模型的多模态版本,能够处理图像和文本输入。对于输入PDF文件,Llama 3.2-vision可以按照以下步骤进行操作: 1. **PDF解析**:首先,需要将PDF文件解析成图像或文本格式。可以使用一些开源库如PyPDF2、pdfplumber或pdf2image来实现这一步骤。 2. **图像处理**:如果PDF被解析成图像格式,可以使用Llama 3.2-vision的视觉处理能力来分析图像内容。可以使用OpenCV等库进行图像预处理,如灰度化、二值化等。 3. **文本提取**:如果PDF被解析成文本格式,可以直接使用Llama 3.2-vision的文本处理能力来分析文本内容。可以使用Tesseract等OCR工具将图像中的文字提取出来。 4. **模型推理**:将处理后的图像或文本输入到Llama 3.2-vision模型中进行推理,得到所需的输出结果。 以下是一个简单的示例代码,展示如何使用Llama 3.2-vision处理PDF文件: ```python import pypdf2 from pdf2image import convert_from_path import cv2 import pytesseract from llama_model import Llama3Vision # 解析PDF文件 pdf_file = 'example.pdf' images = convert_from_path(pdf_file) # 初始化Llama 3.2-vision模型 model = Llama3Vision() # 处理每一页图像 for image in images: # 将图像转换为OpenCV格式 cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # 图像预处理 gray_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY) _, binary_image = cv2.threshold(gray_image, 150, 255, cv2.THRESH_BINARY) # 文字提取 text = pytesseract.image_to_string(binary_image) # 模型推理 output = model.inference(text) print(output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值