相机成像模型

本文介绍了相机成像的基本原理,从小孔成像模型出发,探讨了图像、像素、相机和世界坐标系的关系,以及相机内参和外参矩阵的计算。此外,还提到了相机在测距(单目、双目、RGB-D深度相机)和标定中的应用,特别是张正友标定法用于计算相机内参和外参。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相机成像过程就是将真实世界中的物体映射到成像平面,其背后的原理可以简化成小孔成像模型,更进一步地,小孔成像模型可以简化成数学中的几何问题,今天我们来看一下相机模型的原理以及应用。

小孔成像:
在这里插入图片描述

将成像过程进一步简化,只考虑现实世界中的一个点P,P点折射或者反射或者自身发的光通过相机的光心投影到成像平面内的p’点,这个过程也叫作投影变换或者射影变换,我们的目标是要求解p’的坐标。

说到坐标,那就肯定离不开坐标系,脱离坐标系的坐标毫无意义,相机成像模型中主要涉及到三个坐标系:
图像坐标系:
我们要求解的p’点坐标对应的坐标系就是图像坐标系,它在相机成像平面内,这也是图像处理过程中最常使用的坐标系,例如,我们使用opencv加载的图像,就是默认图像左上角为坐标系原点,水平向右为X轴,垂直向下为Y轴;有的也以图像中心为坐标系原点,使用不同的坐标系,图像中同一个点的坐标不同,但图像各点的相对坐标不变,另外,图像坐标系与其他坐标系相比是2维的。
像素坐标系:
加粗样式图像坐标系的单位是mm,像素坐标系没有单位,我们常说的1024*768就是像素坐标,像素坐标乘以每个像素的物理尺寸就是图像坐标了。
相机坐标系:
当我们固定好相机位置和方向,准备拍照时࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值