相机成像过程就是将真实世界中的物体映射到成像平面,其背后的原理可以简化成小孔成像模型,更进一步地,小孔成像模型可以简化成数学中的几何问题,今天我们来看一下相机模型的原理以及应用。
小孔成像:
将成像过程进一步简化,只考虑现实世界中的一个点P,P点折射或者反射或者自身发的光通过相机的光心投影到成像平面内的p’点,这个过程也叫作投影变换或者射影变换,我们的目标是要求解p’的坐标。
说到坐标,那就肯定离不开坐标系,脱离坐标系的坐标毫无意义,相机成像模型中主要涉及到三个坐标系:
图像坐标系:
我们要求解的p’点坐标对应的坐标系就是图像坐标系,它在相机成像平面内,这也是图像处理过程中最常使用的坐标系,例如,我们使用opencv加载的图像,就是默认图像左上角为坐标系原点,水平向右为X轴,垂直向下为Y轴;有的也以图像中心为坐标系原点,使用不同的坐标系,图像中同一个点的坐标不同,但图像各点的相对坐标不变,另外,图像坐标系与其他坐标系相比是2维的。
像素坐标系:
加粗样式图像坐标系的单位是mm,像素坐标系没有单位,我们常说的1024*768就是像素坐标,像素坐标乘以每个像素的物理尺寸就是图像坐标了。
相机坐标系:
当我们固定好相机位置和方向,准备拍照时