Neurolmage:儿童和青春期早期大脑内在活动的复杂度

摘要

大量证据表明,脑信号复杂性(BSC)可能是健康大脑功能的重要指标,或者是疾病和功能障碍的前兆。然而,尽管最近取得了进展,但我们目前对BSC如何在大规模网络中出现和发展,以及形成这些动态因素的理解仍然有限。在这里,我们利用静息态功能近红外光谱(rs-fNIRS)捕捉和表征了107名6-13岁健康被试的大规模功能网络中BSC动力学的性质和时间过程。自发性BSC的年龄依赖性增加主要发生在高阶关联区域,包括默认模式(DMN)和注意(ATN)网络。我们的研究结果还揭示了BSC的不对称发育模式,这是特定于背侧和腹侧ATN网络的,前者显示出BSC的左侧化,后者显示出右侧化。与男性相比,这些与年龄相关的侧偏性变化在女性中似乎更为明显。最后,使用机器学习模型,我们表明BSC是一个可靠的实际年龄预测指标。高阶关联网络,如DMN和背侧ATN,在预测以前未见过的个体的年龄方面表现出最强大的预测能力。综上所述,我们的研究结果为在童年和青春期进化的大规模内在网络中的BSC动态的时空模式提供了新的见解,表明基于网络的BSC测量代表了一种追踪正常大脑发育的有前途的方法,并可能有助于早期发现非典型发育轨迹。

1. 引言

人类大脑皮层的成熟是一个异时的过程,系统发育上较老的单模态感觉运动区域在婴幼儿期首先成熟,而进化上较晚的异模态关联区在从儿童期到青春期和成年期的过渡期间成熟得更晚,该关联区服务于高阶认知功能。异模态联合皮层的长期成熟为发育中的大脑提供了较长的时间,来与不断变化的环境及其不断扩大的社会环境相互作用。在网络层面上,在儿童发育过程中,大脑功能组织从短距离、局部连接主导模式转变为更全脑连接的架构,该架构促进了来自空间分布区域输入的整合,使大脑成为一个更动态的系统,能够快速无缝地适应和穿越不同的大脑功能状态。也正是在这一时期,一些高阶功能变得越来越偏向于一个半球,这可能会减少跨半球交互的需要,增加大脑并行处理多项任务的能力。然而,与大量评估大脑网络连通性的工作相比,这些网络中神经信号的内在时空特征与发育相关的变化,以及塑造网络动态的因素仍未得到充分探索。

据说,人脑在“临界点边缘”以最佳状态运行,介于时间秩序和混沌之间,具有在更长的时间尺度上向后一种能量格局移动的倾向,即随着时间的推移,倾向于更高的复杂性。从发育和衰老研究中收集的证据表明,脑信号复杂性(BSC)在生理和行为上都有意义,可以作为最佳脑功能的可靠标记或“神经特征”,或者作为疾病和功能障碍的替代。自发性BSC的增加被认为反映了一个更复杂和适应性更强的神经系统,能够连接多种功能状态,并带来更稳定的行为表现。大脑信号的时间不确定性或复杂性可以用熵来衡量。近年来,一种被称为多尺度熵(MSE)的非线性测量,作为捕获功能系统时间动力学研究的有前途的工具而受到关注。MSE的优势在于,与其他熵度量不同,它能够量化一个时间序列中跨多个时间尺度的复杂程度,这使得它特别适合于研究非线性生物系统,如人脑。

在这里,我们的目标是利用MSE在一组典型发育中的儿童和青少年(N=107)中识别和表征与发育相关的大脑信号变化。我们利用功能性近红外光谱(fNIRS)提供的高时间分辨率(例如本研究中的50 Hz采样率),这是一种新兴的光学神经成像技术,可以捕获类似于fMRI的血液动力学变化,并测量了先前由fMRI定义的几个脑网络中的自发局部大脑活动。我们假设,相对于单峰网络,高阶关联网络将表现出更大的BSC作为年龄的函数。此外,我们还研究了BSC是否可以作为大脑成熟,或所谓的“大脑年龄”的可靠和可重复的标志。我们采用支持向量回归(SVR)机器学习模型来确定,BSC是否可以用于准确预测一组以前未见过的人群的实际年龄。最后,鉴于之前的研究证明了功能网络发展中的偏侧性效应,我们还研究了这些大规模网络在时空动态中表现出半球不对称性的程度,以及这些影响是否与性别有关。

2. 材料与方法

2.1 被试

共有107名健康儿童和青少年(年龄范围,6-13岁;平均年龄9.7 ± 2.2岁;男性60例,9.7 ± 2.1岁; 女性47例,9.6 ± 2.2岁)。根据爱丁堡惯用手问卷的评估,所有被试都是右撇子。每位被试在研究登记前都给予了书面知情同意书以及父母同意书。本研究方案经北京师范大学认知神经科学与学习国家重点实验室机构审查委员会批准。

2.2 数据采集和MRI配准

使用46通道连续波近红外光学成像系统记录大脑皮层中氧合血红蛋白(HbO)和脱氧血红蛋白(HbR)浓度的变化(图1A)。探头阵列由12个光源(每个光源有两个波长:670 nm和830 nm)和24个探测器组成,这些探测器被放置在覆盖整个头皮大部分的可拉伸帽上,每个相邻光源探测器之间的光极间距为3.2 cm(图1B-C)。探头阵列的位置是根据国际10-20坐标系确定的。rs-fNIRS采集的采样率设定为50 Hz。所有fNIRS成像都在灯光昏暗、声音衰减的房间进行,持续约11分钟。每个被试都配有U型头枕,以避免头部运动,并指示他们放松,闭上眼睛,在fNIRS数据采集期间保持清醒。

为了验证探头的定位方法,使用北京师范大学脑成像研究中心的3T西门子Tim Trio MRI扫描仪从任意选择的被试获得高分辨率结构T1加权图像。在MRI数据采集过程中,被试平卧,同时佩戴探头阵列帽。维生素E胶囊贴在头皮上46个测量通道对应位置的探头阵列帽上,作为MR共同配准的基准标记(图1C)。采用磁化处理的快速梯度回波序列:176层,重复时间(TR)=2600ms,回波时间(TE)=3.02ms,反转时间=900ms,视野(FOV)=256×224mm2,体素大小=1 mm×1 mm×1 mm,翻转角度=8°,层位=矢状面。利用SPM12软件中的NIRS_SPM工具箱将MR图像归一化为MNI空间。根据自动解剖标记(AAL)模板确定每个fNIRS通道的蒙特利尔神经学研究所(MNI)坐标(图1B)。

2.3 数据预处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值