摘要:无创神经影像学已经揭示了人类大脑在静息状态下基于特定网络的动态特征,但其潜在的神经生理机制仍不清楚。我们对42名受试者采用了颅内脑电图技术,以表征默认模式网络(DMN)、额顶叶网络(FPN)和突显网络(SN)中的局部场电位。我们发现,在DMN中,低频段(θ和α波段)的网络内相位相干性更强;而在FPN中,高频段(γ波段)的网络内相位相干性更强。隐马尔可夫模型表明,DMN表现出对低频相位耦合的偏好。相位-振幅耦合(PAC)分析显示,DMN中的低频相位调制了FPN的高频振幅包络,这表明静息状态下内在脑网络的特征具有频率依赖性。这些发现为支持人类大脑内在组织网络模型提供了颅内电生理证据,并揭示了大脑网络在静息状态下进行通信的方式。
1. 引言
网络视角被视为全面理解大脑作为一个综合系统以及阐明大脑综合功能的关键。自使用功能磁共振成像(fMRI)首次研究大脑持续活动中空间组织的网络以来,静息态网络(RSNs)已成为研究热点。RSNs是指在清醒静息状态下,大脑区域间血氧水平依赖(BOLD)信号在慢速时间尺度上的相关性,过去二十年里,基于fMRI的方法已对其进行了广泛表征。先前的研究已确定了至少三个典型网络:a) 默认模式网络(DMN),又称任务负激活网络,主要包括后扣带回(PCC)和中内侧前额叶(mPFC)。DMN通常被认为支持自我参照活动;b) 额顶叶网络(FPN),涉及执行控制、工作记忆和注意过程等高级认知功能,包括背外侧前额叶(dlPFC)和下顶叶(IPL)。FPN对于协调和整合来自各种感觉和认知过程的信息以指导目标导向行为至关重要;c) 突显网络(SN),包括前脑岛(AI)和背侧前扣带回(dACC),与情绪体验和主观感受中的觉醒和显著性有关。SN通常在跨感觉模态检测新颖刺激时被激活。
这些网络也被认为存在相互作用。例如,FPN和SN被发现持续负向调节DMN的活动,并共同参与注意、工作记忆、决策制定和其他高级认知功能。尽管非侵入性技术如fMRI为人类大脑网络研究提供了重要见解,但大脑网络组织的电生理基础仍不清楚。
颅内脑电图(iEEG)为人类RSNs的电生理研究提供了一种手段。现有的iEEG研究已初步为通常被认为是大脑网络关键节点的不同大脑区域之间的关系提供了电生理证据,尽管结果似乎存在差异。例如,DMN的关键区域PCC被发现通过静息态高频带功率波动与角回和mPFC进行通信,而另一项研究则未发现此类高频带DMN相关性,但发现DMN与FPN之间的θ(4–8 Hz)频带限功率相关性更强,感觉运动网络(SMN)与背侧注意网络(DAN)之间的α(8–12 Hz)频带相关性也更强,这些相关性高于其他网络。电生理信号中大脑网络载波频率的这些差异可能源于样本量小和电极覆盖范围有限。然而,频率的作用仍不明确,也未达成共识。
本研究报告了一项针对47名参与者的综合iEEG研究,这些参与者的大脑网络关键节点直接植入了深度电极,旨在探究大脑网络内在组织的电生理机制,研究对象包括DMN、FPN和SN的活动及相互作用。目前普遍认为存在两种截然不同的内在耦合模式。一种模式来自带限振荡信号的相位耦合,另一种模式来自振幅包络(或功率)的耦合。为了确定大脑网络的电生理特征,本研究从这两种测量中检查了网络的相关性,包括功率相关性和相位同步性。我们预期:1) 网络内相互作用将显示出比网络间相互作用显著更强的功率相关性和相位同步性;2) 网络间功率相关性或相位同步性在不同频段上存在差异。
2. 方法
2.1 研究对象
本研究纳入了47名接受术前评估并植入深度电极的药物难治性局灶性癫痫患者。患者均来自深圳大学总医院。本研究已获得深圳大学总医院伦理委员会批准,所有参与者均签署了书面知情同意书。符合条件的研究对象需在默认模式网络(PCC、mPFC)、额顶网络(dlPFC、IPL)和突显网络(dACC、AI)这六个预设感兴趣区域(ROIs)中的至少两个核心节点植入电极。对符合纳入标准的42名参与者的颅内脑电图(EEG)数据进行了分析。此外,还从15名患者的子集中采集了静息态功能磁共振成像(fMRI)数据,以验证特定ROIs形成独特内在网络的能力。
2.2 数据采集
2.2.1 立体脑电图(SEEG)数据采集
参与者被指示在3分钟内注视一个固定十字,眼睛睁开,不要特意思考任何事情。同时,使用铂铱多导联电极在256或192通道EEG放大器系统中记录脑组织局部场电位(LFPs)。采样率根据临床要求确定,范围在2000至2500Hz之间。每个电极长度为2mm,厚度为0.8mm,电极间距为3.5mm。神经解剖学目标和每位参与者植入的电极数量完全根据临床需求而变化。
2.2.2 磁共振成像(MRI)采集
术前MRI扫描在配备32通道头线圈的3T SIEMENS Trio扫描仪上进行。静息态fMRI扫描时,参与者被指示闭上眼睛但保持清醒。采集高分辨率三维T1加权磁化准备快速采集梯度回波图像作为解剖参考(重复时间(TR)=2200ms;回波时间(TE)=1.53ms;翻转角(FA)=7°;1.0mm等体素)。通过平面回波成像(EPI)序列采集静息态fMRI记录(TR=3000ms;TE=30ms;FA=85°;3.6mm等体素;8分钟内160卷)。此外,电极植入后进行计算机断层扫描(CT),用于电极触点解剖定位。
图1 方法的示意图
2.3 数据处理
2.3.1 MRI预处理
使用大脑成像数据处理与分析进行功能体素的预处理。预处理步骤如下:首先,进行时间和空间校正,包括层面时间和头动校正,将空间标准化为EPI模板(体素大小:3mm)。任何在任一基本方向上最大平移超过3mm或最大旋转超过3°的参与者均被排除在后续分析之外。其次,对标准化数据进行去趋势分析,以最小化线性趋势的影响。第三,通过线性回归分析从功能体素中去除干扰信号。干扰信号包括六个运动参数及其一阶时间导数、白质和脑脊液信号、全局信号及其时间导数。
2.3.2 SEEG预处理
使用公开可用的Fieldtrip工具对SEEG记录进行预处理。首先将信号下采样至1000Hz。然后对所有通道进行视觉检查,以去除噪声通道。任何超过通道均值5个标准差的通道,以及具有异常或发作间期棘波的通道,均被排除在进一步分析之外。使用带宽为4Hz的巴特沃斯陷波滤波器去除50Hz及其谐波线噪声。最后,将颅内EEG(iEEG)数据重新参考为共同平均值。为了减少边界和延续效应,我们从每个iEEG数据的开头丢弃了500个样本点。
2.3.3 电极定位
为了定位电极,对术后CT图像进行阈值处理,并使用自主研发的Matlab工具箱计算每个电极的加权质心。使用FMRIB软件库(FSL)的flirt将术后CT图像与术前MRI图像进行配准。将个体术前MRI图像标准化为蒙特利尔神经病学研究所(MNI)标准脑。将上述获得的变换矩阵组合,以将电极坐标从CT空间转换到MNI空间。我们选择了位于默认模式网络(DMN)、额顶网络(FPN)和突显网络(SN)中的271个感兴趣电极(图1b),这些网络是根据Yeo皮质图谱定义的。
2.4 数据分析
2.4.1 fMRI功能连接
为了计算iEEG电极对应的每对脑区之间的fMRI功能连接,我们以每个电极的MNI坐标为中心,定义了一个半径为3毫米的球形感兴趣区域(ROI)。然后,提取ROI内所有体素的时间序列并进行平均。计算每对ROI之间的皮尔逊相关系数(r)。为了进行进一步分析,使用Fisher-z变换将r值转换为z值。我们还尝试使用较小或较大的ROI半径以及其他指标(例如相干性)进行估计。
2.4.2 LFP功率相关性
为了获得LFP信号的可靠频谱估计,我们使用了基于离散椭球序列(DPSS)的方法,具体参数如下:5秒段采用9个锥度,步长为1秒,频率平滑范围为±1 Hz,频率范围从1到170 Hz。频谱分析的代码改编自先前的研究。然后,在6个不同的频段内(delta:<4 Hz;theta:4–8 Hz;alpha:8–13 Hz;beta:13–30 Hz;gamma:30–70 Hz;HFB:70–170 Hz)平均功率谱。使用皮尔逊相关系数(r)计算每对电极之间功率时间序列的相关性。为了进行进一步分析,使用Fisher-z变换将r值转换为z值。
2.4.3 LFP相位同步
为了检查两个时间序列之间的相位同步,我们使用了加权相位滞后指数(wPLI)。对于时间点t的给定时间序列X(t)和Y(t),PLI定义为复数交叉谱密度的虚部符号之和的绝对值。wPLI通过根据虚部的大小对交叉谱进行加权,来限制围绕实轴的交叉谱元素的影响,这些元素可能会因小的噪声扰动而改变其“真实”符号:
在此,wPLI是使用基于MATLAB的Fieldtrip工具箱中的脚本计算的。在0到170 Hz的频率范围内,以1 Hz为步长在每个频率箱中计算wPLI。
为了检验wPLI的显著性,我们使用了置换测试。在每次置换中,电极的标签被随机打乱,并且如上所述计算每个频段的wPLI。重复此过程1000次后,获得了一个wPLI的空分布。通过从替代数据的平均值中减去结果并除以替代分布的标准差来获得z分数。我们跨通道平均替代PLI值,以获得替代平均值和标准差的估计。然后,与功率相关性类似,将获得的PLI的z值在6个典型频段内进行平均,以便进行进一步比较。
2.4.4 网络内与网络间LFP连接性的比较
网络内功能连接性是通过计算每个网络(默认模式网络DMN、额顶网络FPN、突显网络SN)内跨越两个区域的长距离电极对之间的功率相关性和加权相位滞后指数(wPLI)来评估的。具体来说,为了最大限度地减少短距离连接性过度采样可能带来的潜在偏差,仅包含区域间对(例如DMN中的PCC-mPFC),去除可能的人为区域内相关性(例如PCC-PCC、mPFC-mPFC)。网络间连接性考虑了所有网络间电极对。
在1到170 Hz的六个典型频段内计算功率相关性,并使用wPLI量化相同频率范围内的相位同步。为了描述网络特有的振荡特征,随后直接使用两样本t检验比较网络内与网络间获得的连接强度(功率相关性值、wPLI)。采用FDR校正来处理多重比较问题。
2.4.5 隐马尔可夫模型(HMM)
隐马尔可夫模型(HMM)是一种广泛用于序列数据建模的统计模型。HMM背后的核心思想是,观测数据是由一系列隐藏状态生成的,每个隐藏状态根据概率分布发射一个观测值。受Vidaurre等人的启发,我们将HMM应用于LFP数据,以进一步研究LFP中的振荡模式。
为了描述网络内和网络间的耦合模式,选择了包含两个网络内电极和一个网络外电极的电极三元组。这些电极三元组的LFP信号作为输入来计算连接性指标。例如,为了评估默认模式网络(DMN)的内在耦合性,DMN三元组包括:1)PCC中的一个电极,2)内侧前额叶皮层(mPFC)中的一个电极,以及3)置于这些DMN区域之外(如背外侧前额叶皮层dlPFC、顶下小叶IPL、背侧前扣带回dACC、前岛叶AI)的第三个电极。这确保了构建:1)PCC和mPFC之间的DMN内电极对,以及2)DMN区域(PCC/mPFC)与外部电极之间的网络间电极对。在评估FPN和SN时,采用了类似的三元组选择方法来得出目标网络内和网络间电极对。使用这种三元组选择方法,配置了47个电极三元组来分析DMN的网络内和网络间连接性。类似地,为FPN评估构建了48个三元组,为SN构建了20个三元组。这些三元组为后续的HMM分析提供了三维多变量输入(如DMN内电极对、DMN间电极对等)。
通过将HMM应用于DMN三元组、FPN三元组和SN三元组,提取了六个状态,这些状态表征了每个网络数据随时间变化的动态波动配置。脚本改编自HMM工具箱。一旦执行了HMM分析并确定了六个状态,我们就继续计算电极三元组内电极对的相位相干性。
2.4.6 相位-振幅耦合(PAC)估计
对于网络间相互作用,考虑到不同网络中存在不同的频率模式,我们假设这些网络之间存在跨频率耦合(CFC)。相位-振幅耦合(PAC)是一种跨频率耦合类型,其中低频振荡的相位调制高频振荡的振幅。我们使用PAC来估计网络间相互作用的CFC。
为了量化PAC,使用了两个振荡分量——一个用于相位时间序列,另一个用于振幅时间序列(图1d)。使用±1 Hz的窄频带提取相位信号,而使用±5 Hz的带宽通过希尔伯特变换提取振幅包络。然后使用Tort及其同事开发的Kullback-Leibler散度算法量化PAC的强度和一致性,该算法产生一个调制指数值。具体来说,这种基于KL散度的调制指数(KL-MI)方法首先通过将相位时间序列分成18个等间距的区间来估计PAC。然后计算每个相位区间内的平均振幅,并通过所有区间的平均振幅进行归一化,生成一个经验振幅-相位分布(P)。KL-MI通过计算P和均匀分布之间的Kullback-Leibler散度,来量化这个经验分布与均匀分布、未耦合的振幅-相位关系这一零假设之间的偏差。较高的KL-MI值表示与独立性偏差更大,从而指示振荡分量之间的跨频率耦合更强。将KL-MI值在先前所述的典型频段内进行平均,以便进行进一步比较。
3. 结果
3.1 选定种子区域内在网络的验证
先前的静息态fMRI研究表明,与网络间相比,内在网络内的功能连接性更强。为了验证我们基于网络的电极选择,并检查我们的fMRI数据中是否存在网络内连接性偏好,我们分析了预定义感兴趣区域(ROI)之间的功能连接性。为每个电极中心、半径为3毫米的球体内的体素提取BOLD信号,然后平均以代表每个ROI。计算所有ROI对之间的皮尔逊相关系数(r),为每个受试者生成271×271的连接性矩阵,然后进行Fisher z变换。通过跨受试者(n=15)平均单个z变换矩阵,生成组平均功能连接性矩阵(图2a)。为了评估组水平上是否存在网络内连接性偏好,对每个网络使用两样本t检验比较网络内与网络间连接强度的平均值。DMN的网络内连接性显著强于网络间连接。同样,FPN和SN也显示出网络内连接性的平均值显著更高。这些发现支持了大脑基于网络的组织假说,验证了我们为网络分配选择的电极。
图2 基于 rs-fMRI BOLD 信号的网络相关性
图3 网络内与网络间的比较
3.2 相位耦合揭示网络内部效应更强
为了表征局部场电位(LFP)中网络特异性的功能连接模式,我们最初采用了标准频带(δ波:<4 Hz;θ波:4–8 Hz;α波:8–12 Hz;β波:12–40 Hz;γ波:40–70 Hz;高频带:70–170 Hz)上的功率相关性分析。我们在预定网络内部及之间计算皮尔逊相关系数,以评估潜在的网络内部耦合。遗憾的是,这些分析并未显示在任何频带上网络内部的固有连接强度超过网络间的连接。因此,我们在LFP信号中未找到网络层面组织的功率相关性证据。
鉴于相位相较于功率可为信号耦合提供补充见解,我们从LFP时间序列中提取相位信息作为另一特征。我们计算了加权相位滞后指数(wPLI)来量化1至170 Hz范围内的相位同步(图3b)。然后,使用双样本t检验来测试这些网络在不同频带上的网络内部与网络间相位一致性。结果表明,在默认模式网络(DMN)中,相对较低频率(4–13 Hz)下的网络内部相位耦合显著更强;而在额顶网络(FPN)中,相对较高的γ和高γ频带(30–70 Hz)内的网络内部相位耦合也较强。在突显网络(SN)中未发现显著的网络内部效应。这种基于相位的方法初步验证了关键区域间网络特异性的振荡特征,其中DMN涉及较慢的频率,而FPN则表现出较快速率的耦合。
图4 HMM状态
3.3 隐马尔可夫模型(HMM)揭示默认模式网络(DMN)、额顶网络(FPN)和突显网络(SN)的网络内部相位一致性更强
接下来,我们采用隐马尔可夫模型(HMM)来模拟我们局部场电位(LFP)记录中振荡状态的时间变化。通过HMM识别出六个状态(图4)。我们的HMM揭示了两个状态,在这两个状态下,默认模式网络(DMN)在较低频率下表现出优先的网络内部相位耦合(图5a)。此外,分析还显示,在状态4下,额顶网络(FPN)在广泛的频率范围内表现出更强的网络内部相位一致性(图5b)。有趣的是,我们还发现,在状态5下,突显网络(SN)在高频带(HFB)中也表现出更强的网络内部相位一致性(图5c)。
3.4 默认模式网络(DMN)与额顶网络(FPN)之间特定频率的相位-振幅耦合(PAC)
PAC结果显示,默认模式网络(DMN)与额顶网络(FPN)之间存在显著的相位-振幅耦合。具体而言,与其他网络(图6)相比,DMN在低频带(<13 Hz)上的相位与FPN的高频振幅包络表现出耦合。这一发现表明,低频DMN的相位调制了FPN中的高频振幅波动,为通过内在网络间的跨频率振幅-相位耦合介导的跨网络交互提供了证据。未发现FPN的低频相位与DMN的高频振幅(与SN相比),或SN的低频相位与DMN的高频振幅(与FPN相比)之间存在任何显著的PAC。
图5 六种状态下的相干性
图6基于Kullback-Leibler(KL)散度的调制指数(MI)被用来量化相位-振幅耦合(PAC)
4. 讨论
本研究利用颅内局部场电位记录探究了静息态脑网络内部及其之间的耦合模式。具体而言,我们采用功率相关性、相位同步性、跨频率耦合和隐马尔可夫模型等方法来表征这些模式。结果显示,默认模式网络(DMN)在低频范围(<13 Hz)内表现出网络内部相位一致性偏好,而额顶网络(FPN)则展现出更高的伽马带相干性。这凸显了不同静息态脑网络独特的振荡特性。通过应用隐马尔可夫模型,我们提取了DMN、FPN和突显网络(SN)的动态振荡网络状态,并揭示了DMN的低频相位一致性和FPN的高频特性。此外,我们的跨频率耦合分析显示,DMN和FPN通过DMN的低频相位(θ波带和α波带)和FPN的高频振幅(伽马带和高频带HFB)耦合进行通信。这些发现提供了新颖的电生理证据,证明了静息态内在脑网络的频率依赖性特征。
4.1 相位耦合网络
我们的结果与先前使用非侵入性方法(如人类血氧水平依赖功能磁共振成像BOLD fMRI)和恒河猴RSN特性的电生理研究得到的静息态网络(RSN)研究结果一致,证明了人类大脑中存在具有频率特异性相位特征的独特颅内网络。相位调制的神经元放电现象已在包括啮齿类、灵长类和人类在内的各种物种中观察到,表明其具有重要的功能意义。相位关系被认为可以促进大脑区域之间的信息传递,同时允许不同信息流的同时传输。在此框架下,我们识别出的网络特异性振荡特征为人类静息态大规模脑系统提供了直接的电生理验证。值得注意的是,空间分布但功能相连的区域之间的相位同步被认为支持内在网络专业节点之间神经元活动的通信和整合。因此,网络层面相位关系的动态变化可能是网络系统内及其之间认知状态依赖性相互作用的基础。在中观尺度上表征这些振荡机制完善了大脑中分布式信息处理的计算模型,并对阐明神经疾病中异常回路水平功能具有重要意义。
4.2 DMN在低频段相位耦合
我们在DMN中观察到的θ波带和α波带相位同步表明,振荡相位编码作为一种内在通信机制,促进了DMN区域之间的功能整合。远程α波带相位相干性被认为支持了注意力、执行和情境过程等潜在分布式但相互连接区域之间的信息整合。θ波带相位同步,特别是在DMN的海马体中,已在动物和人类的记忆系统中大量发现,而DMN的内侧前额叶皮层(mPFC)在记忆处理过程中也被证明存在相位耦合。与高频相比,低频振荡具有更长的波长,可能促进大脑中更长距离的相干性。这一特性可能通过δ-θ波带的相位同步支持广泛分布的DMN节点之间的整合。尽管本研究未考察不同振荡频率的具体认知功能,但已有研究表明,不同频段的连接具有不同的功能作用。例如,α波带振荡与功能抑制相关;β波带的振荡或耦合与维持当前认知状态有关。先前研究还发现,α波振荡可以增强DMN的连接性,支持DMN的功能作用。综上所述,这些发现表明,DMN通过慢速频率相位关系在维持静息态内部导向的认知操作中发挥着积极且协调的作用。未来工作将动态表征认知状态下如后扣带回-内侧前额叶皮层(PCC-mPFC)等中枢区域之间的频谱协调模式,可为理解潜在波动心理状态内在网络灵活切换的新机制提供见解。
4.3 FPN在高频段相位耦合
我们在FPN中发现的伽马/高伽马相位耦合支持了高频支持更专业的局部计算和分布式模块之间快速整合的假设。FPN服务于多种执行功能,这些功能需要协调涉及认知控制、工作记忆和注意力等过程的区域,这些过程受益于快速的时间编码能力。高频耦合可能与这种功能所需的快速通信需求有关。更高的频率还为神经放电的协调提供了更精确的时间框架。这种精确性对于整合参与复杂认知处理的分布式网络中的信息是必要的。与DMN相比,FPN在其广泛区域内表现出较弱的延长相位耦合特征,这与在没有明确外部需求时降低的功能维持需求相一致。未来工作有趣的是考察FPN的频率耦合特征是否在休息或默认状态下向DMN等较慢节律转变,从而允许其不太集中的认知功能所需的更广泛协调。
本研究观察到默认模式网络(DMN)与额顶网络(FPN)在特定网络振荡动力学上的差异,这些差异映射到它们在外向认知与内向认知中提出的独特作用上。在较高频率下,突触传递的效率可以得到增强,从而促进神经元之间的有效通信。这对于像额顶回路这样的网络尤为重要,因为其中的突触可塑性和强度是认知灵活性和学习的关键。表征FPN伽马同步性与任务表现之间的关系,可以为高阶执行功能中FPN作用的功能验证提供依据,并优化相关模型。综上所述,这些发现为支持不同认知操作的内源性网络通信特征提供了新颖的电生理见解。
4.4 低频DMN相位-高频FPN振幅耦合
跨频率耦合分析揭示了DMN与FPN之间一种新颖的交互模式,即DMN振荡的低频相位对FPN振荡的高频振幅包络有显著影响。这种内在网络之间的相位-振幅耦合(PAC)配置为揭示促进高效网络间通信和协调的潜在机制提供了新的见解。先前的研究已经确立了PAC在跨时空尺度整合神经处理中的重要性。鉴于DMN和FPN分别与自我参照功能和执行功能相关联,当前的研究结果表明,这种跨网络耦合在动态关联默认模式和控制模式操作以支持复杂认知处理中发挥着重要作用。DMN与FPN之间PAC配置的特定任务状态调制是未来研究的一个重要方向。
4.5 隐马尔可夫模型(HMM)状态
我们的HMM分析揭示了DMN/FPN/SN三元组下的六个基础状态。由于每个三元组都包含网络内和网络间的电极对,因此这六个状态为网络内的通信动力学提供了见解。由于这些隐藏状态对应于独特的脑活动或连接模式,因此某些状态可能主要代表网络内连接,而其他状态则表明网络间连接更强。一些状态甚至可能反映缺乏相干连接或网络内和网络间连接的组合。我们在这些已确定状态上进行的相位相干性分析揭示了不同水平和模式的功能连接。
需要注意的是,由于我们分别对DMN、FPN和SN网络进行了单独的HMM分析,因此无法直接从HMM结果中确定哪个网络最主导或最具影响力。然而,我们可以根据观察到的连接模式推测每个网络不同状态的潜在功能意义。例如,一些状态表现出更强的DMN网络内连接,这可能与DMN在任务无关和自我参照认知过程中的作用有关。相比之下,FPN网络内连接更强的状态可能表明该网络在协调和整合来自感觉和认知系统的信息中的作用。
此外,HMM分析揭示的隐藏状态强调了脑活动的动态性质,其中网络内与网络间连接的相对强度可以根据特定的脑状态或认知过程而变化。进一步探究这些隐藏状态的认知和行为相关性将是阐明其潜在功能作用的重要下一步。
4.6 局限性
本研究的一个局限性在于数据是从难治性癫痫患者身上收集的。因此,即使我们避免了从与癫痫相关的区域(存在发作间期放电、结构性病变或癫痫发作起源的证据)进行记录,当前的研究结果和结论是否能推广到其他人群仍不得而知。本研究的另一个局限性是在记录局部场电位(LFPs)时没有同时进行认知功能的同步行为测量,这在未来的研究中是必要的。
此外,对于不同受试者电极放置的具体位置应谨慎考虑。由于可用电极的限制,即使电极位于同一解剖区域内,其在蒙特利尔神经病学研究所(MNI)坐标系中的精确位置也可能因人而异,这可能导致分析结果的差异。
5. 结论
综上所述,我们通过颅内电生理记录验证了默认模式网络(DMN)、额顶网络(FPN)和突显网络(SN)在静息态网络方面的经典神经影像学发现,支持了大脑内在组织的网络视角。我们展示了静息状态下网络通信的频率特异性方式。我们的结果强调了确定网络和网络间通信底层载波频率的重要性。我们的工作为理解大脑网络组织的神经生理学提供了见解。
参考文献:Oscillatory mechanisms of intrinsic human brain networks.