K类函数和KL类函数

文章介绍了K类和KL类函数在非线性系统理论中的定义。K类函数是指在[0,a)区间内严格递增且在原点处取值为0的连续函数,而KL类函数则是对每一个固定的s,关于r是K类函数,同时关于s递减并在s趋向无穷大时趋于0。这些函数在控制系统理论中用于描述系统的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Class K \mathcal{K} K function- K \mathcal{K} K类函数

Definition: A continuous function α : [ 0 , a ) → [ 0 , ∞ ) \alpha:[0,a)\rightarrow[0,\infin) α:[0,a)[0,) is said belong to class K \mathcal{K} K if it strictly increasing and α ( 0 ) = 0 \alpha(0)=0 α(0)=0. It is said to belong to class K ∞ \mathcal{K_{\infin}} K if a = ∞ a=\infin a= and α ( r ) → ∞ \alpha(r)\rightarrow\infin α(r) as r → ∞ r\rightarrow \infin r.

译:如果连续函数 α : [ 0 , a ) → [ 0 , ∞ ) \alpha:[0,a)\rightarrow[0,\infin) α:[0,a)[0,) 严格递增且满足 α ( 0 ) = 0 \alpha(0)=0 α(0)=0,则 α \alpha α 属于 K \mathcal{K} K 类函数。进一步,如果 a = ∞ a=\infin a= 且当 r → ∞ r\rightarrow \infin r 时有 α ( r ) → ∞ \alpha(r)\rightarrow\infin α(r) 成立,则 α \alpha α 属于 K ∞ \mathcal{K_\infin} K 类函数。

Class K L \mathcal{KL} KL function- K L \mathcal{KL} KL类函数

Definition: A continuous function β : [ 0 , a ) × [ 0 , ∞ ) → [ 0 , ∞ ) \beta:[0,a)\times[0,\infin)\rightarrow[0,\infin) β:[0,a)×[0,)[0,) is said belong to class K L \mathcal{KL} KL if, for each fixed s s s, the mapping β ( r , s ) \beta(r,s) β(r,s) belongs to class K \mathcal{K} K with respected to r r r and, for each fixed r r r, the mapping β ( r , s ) \beta(r,s) β(r,s) is decreasing with respected to s s s and β ( r , s ) → 0 \beta(r,s)\rightarrow 0 β(r,s)0 as s → ∞ s\rightarrow \infin s.

译:对于连续函数 β : [ 0 , a ) × [ 0 , ∞ ) → [ 0 , ∞ ) \beta:[0,a)\times[0,\infin)\rightarrow[0,\infin) β:[0,a)×[0,)[0,),如果对于每个固定的 s s s,映射 β ( r , s ) \beta(r,s) β(r,s) 都是关于 r r r K \mathcal{K} K 类函数, 而对于每个固定的 r r r,映射 β ( r , s ) \beta(r,s) β(r,s) 是关于 s s s 的递减函数,且当 s → ∞ s\rightarrow \infin s β ( r , s ) → 0 \beta(r,s)\rightarrow 0 β(r,s)0,则 β \beta β属于 K L \mathcal{KL} KL 类函数。

参考文献

【1】Hassan K. Khalil, Nonlinear Systems, 3 edition, page 144.

### KL 函数在控制系统稳定性分析中的作用 对于控制系统的稳定性分析,KL 函数扮演着至关重要的角色。这函数主要用于描述系统状态随时间变化的行为特性,并帮助证明闭环系统的渐近稳定性质[^1]。 #### 定义与特征 KL 函数定义为连续且严格单调递减的映射关系 \( \beta : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \),满足如下条件: - 对于固定的 \( t \geq 0 \),\( \beta(r,t) \) 关于 \( r \) 是严格增加的; - 当固定 \( r > 0 \) 时,\( \beta(r,t) \) 随着 \( t \) 的增长而趋于零; 这种特殊的数学结构使得 KL 函数非常适合用来刻画动态过程收敛到平衡点的速度以及程度[^2]。 #### 应用实例 考虑一个简单的线性定常系统模型: ```matlab % MATLAB code snippet to simulate a linear time-invariant (LTI) system response using a given K-L function. A = [-1]; % System matrix A for an exponentially stable LTI system B = [1]; C = [1]; D = 0; sys = ss(A,B,C,D); tspan = linspace(0,10,100); % Time span from 0s to 10s with 100 points u = zeros(size(tspan)); % Input signal as zero vector since we focus on unforced dynamics [y,t,x] = lsim(sys,u,tspan,[1]); % Simulate the output y and state trajectory x starting at initial condition [1] figure(); plot(t,y,'LineWidth',2); xlabel('Time'); ylabel('Output Response'); title('Response of Exponentially Stable LTI System Modeled by a Specific K-L Function'); grid on; ``` 上述代码展示了如何利用MATLAB模拟一个指数稳定的线性不变系统响应,其中隐含地运用了某种形式的KL函数来表征其衰减速率最终趋向的状态。 通过引入合适的Lyapunov函数并结合相应的不等式约束,可以构建出具体的KL型估计器,从而实现对复杂非线性系统的全局或局部吸引域的有效评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值