谣言检测论文分享(五) Fake News Detection via Knowledge-driven Multimodal Graph Convolutional Networks(KMGCN)

本文提出了一种知识驱动的多模态图卷积网络(KMGCN)方法,通过联合建模文本信息、知识概念和视觉信息来检测假新闻。KMGCN利用图结构捕获长程语义特征,通过知识蒸馏获取背景知识,增强了假新闻检测的性能。在Twitter和Weibo数据集上的实验显示,KMGCN优于现有先进方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_41964296

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值