鉴于防止上篇文章太长,于是单独放一篇时间序列相关的重点概念理解。
另一部分内容👉《【时序】思维导图、逻辑、解题步骤》
目录
1. 时间序列分析
问:时间序列分析在做什么?
目的有两个。一是,认识产生观测序列的随机机制,即建立数据生成模型;二是,基于历史数据,考虑相关序列或因素,预测未来可能取值。
所以不能假定观测值独立地取自同一总体,因为他们必须相关,才有研究的价值。(《时间序列分析及应用-R语言》Jonathan D. Cryer)
《为什么会觉得时间序列模型比较难学》:https://zhuanlan.zhihu.com/p/32634593
通过研究记忆或历史数据(这些数据必须是非独立的),寻找某种共性规律(递推机制),去预测它自己。把当下的随机变量观测值,表示成其历史观测值的函数。
2. 平稳
【平稳时间序列】基本上不存在趋势的序列,这类序列的各观察值基本上在某个固定的水平上波动,虽然在不同的时间段波动的程度不同,但并不存在某种规律,其波动可以看成是随机的。
【非平稳序列】包含趋势、季节或周期的序列,可能含一种或几种,如含趋势、趋势+季节、多成分混合的复合型序列。
(1)平稳性是什么含义?
平稳指每一期的序列值与前几期之间存在一种一致的结构性变化关系(是自协方差函数定义的线性关系,不是趋势、周期关系),这样才能建立模型去分析预测。