(四十三:2021.04.14)《Methodology Camp》——Chapter 1:Task

本文详细介绍了人工智能在医疗图像分析中的应用,包括图像分类、分割任务,如基础图像分类、医学图像分割、病灶分割等。同时,讨论了药物发现、心电图分析等方面,为AI在医疗领域的实践提供了全面的概述。
摘要由CSDN通过智能技术生成

Methodology CampTask

讲在前面

  • Methodology Camp :
              那些你解过的题、你解题的思路、你的灵光一闪,都是你的方法,而方法论,便是这些方法的堆砌。只有你的方法足够多,经验足够丰富,才有了形成方法论的必要条件,但也是不充分的。
              用面向对象来解释,Methodology 很像复杂而抽象化的类,于我而言更像是一种感觉,一种能让你遇到问题不会说好难的感觉。
              我相信,随着我不断的更新,这篇博客会给越来越多的新人带来启发和思考,甚至帮助到你的学习和生活。

  • Task :
              当你的导师给你一个课题或者项目,当你的客户经理对你提出用户的需求,当你灵光一闪想要搞一个interesting时,那么你天然的面向了一个任务。怎么实现这个功能?到底用什么算法?怎么做调研?
              人工智能发展到今天,单单CV领域的基本任务都有上千种,更不要说机器学习之外的领域,更是广袤无垠。
              你的导师是如何给你分发任务的呢?为什么让你用nnUNet而不是用U2Net呢?
              这篇博客,我会将AI领域内所有有可能涉及到的任务进行一个总结,并尽可能列出现有的主流框架及算法。
             这个网站,尽可能多的包含了人工只能的任务,同时会不定时的更新SOTA级别的模型,我会在对这里的任务做总结和详细的分析。

Topic 1:Medical

基准测试 任务数 数据集 论文
226 182 134 2434

1.1 Image Classification

1.1.1 Fundamental Image Classification(基础图像分类)

  • 定义:基础图像分类是对一整张图进行理解,比如两张图,一张图中有一只狗,另一张中有一只猫,那么基础图像分类就是认识这个狗和这个猫。图像分类是仅对一张图中的一个对象进行分类,而目标检测则是需要分析一张图中的多个对象:在哪里、是什么?

1.1.2 Few-Shot Image Classification(少量图像分类)

  • 定义:少量图像分类是指,每个类别仅仅含有小于6个的示例,从而进行图像分类。

1.1.3 Fine-Grained Image Classification(细粒度图像分类)

  • 定义:细粒度图像分类任务着重于区分难以区分的对象类别,例如鸟类,花朵或动物的种类; 并确定车辆的品牌或型号。

1.1.4 Semi-Supervised Image Classification(半监督图像分类)

  • 定义:半监督图像分类利用未标记的数据以及标记的数据来提高分类性能。

1.1.5 Small Data Image Classification(小数据图像分类)

  • 定义:有监督的图像分类,带有数十至数百个带标签的训练示例。(和少量图像分类的区别?

1.1.6 Hyperspectral Image Classification(高光谱图像分类)

  • 定义:高光谱图像分类是将类别标签分类到使用(超)光谱传感器捕获的图像中每个像素的任务

1.1.7 Self-Supervised Image Classification(自监督图像分类)

  • 定义:进行分类任务的学习时,模型自己学习损失函数。

1.1.8 Learning with noisy labels(嘈杂标签学习)

  • 定义:当数据的标注质量不高,甚至很差的时候,如何进行学习。

1.1.9 Sequential Image Classification(图像序列分类)

  • 定义:对序列图像的分类。

1.1.10 Genre classification(图像序列分类)

  • 定义:对艺术品的流派进行分类。

1.1.11 Unsupervised Image Classification(无监督图像分类)

  • 定义:不需要标签进行分类学习。

1.1.12 Document Image Classification(文件影像分类)

  • 定义:基于文本文件的内容进行分类,比如这个文本文件是论文呢?还是报告?

1.1.13 Sparse Representation-based Classification(基于稀疏表示的分类)

  • 定义:通过学习图像的稀疏表示来进行分类。

1.1.14 Satellite Image Classification(卫星图像分类)

  • 定义:卫星图像的分类。

1.1.15 Superpixel Image Classification(超像素图像分类)

  • 定义:先依据图像中的纹理、形状等信息进行超像素分割,之后再进行图像分类。

1.1.16

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值