PCL1.8+Win10+VS2017+Kinect V2读取并保存点云 报错解决

    看了网上很多博客的相关内容,都很相像,但是自己实现的时候却总是报错。

报错1: 

  使用了    boost::shared_ptr<pcl::Grabber> grabber = boost::shared_ptr<pcl::Grabber>(new pcl::Kinect2Grabber);

这行代码之后错误显示没有回调   ,这是因为

typedef pcl::PointXYZRGB PointType; //kinect v2设置成PointXYZRGBA会出错,,,其中A代表透明度,kinect V2无法直接获取RGBA信息,所以会报错。改成PointXYZRGB或者PointXYZ,就能成功获取点云了。

SFM(Structure from Motion)是一种通过从多个相机图像中恢复出场景的三维结构和相机运动的技术。SFM三维重建是SFM技术的一个应用,即通过对多个相机图像进行分析和处理,生成一个精确的三维场景模型。 在SFM三维重建中,BA(Bundle Adjustment)是一个优化方法,用于通过优化相机的位姿和场景的三维结构,以最小化重建误差。在本次回答中,我们使用了一些工具和库来实现SFM三维重建的BA优化。 首先,我们使用VS2015作为开发环境,以便编译和运行我们的代码。其次,我们使用OpenCV3.4,作为我们图像处理和计算机视觉算法的主要库。OpenCV提供了许多用于图像特征提取、匹配和相机校准的函数和类。 此外,我们还使用了PCL(Point Cloud Library)1.8来处理点云数据。PCL是一个广泛使用的库,用于点云处理和三维重建。它提供了许多用于点云滤波、配准和特征提取的算法。 最后,我们使用Ceres Solver来进行BA优化。Ceres Solver是一个用于非线性优化的开源库,它提供了强大的优化算法和工具。在SFM三维重建中,我们使用Ceres Solver来优化相机的位姿和场景的三维结构,以获得更高质量的重建结果。 总之,通过使用VS2015、OpenCV3.4、PCL1.8和Ceres Solver,我们可以实现SFM三维重建的BA优化。这些工具和库提供了许多用于图像处理、点云处理和非线性优化的算法和函数,使我们能够更好地重建三维场景。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

溯夜流云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值