算法伪代码:
1)maze_env.py(maze环境直接使用了MorvanZhou的代码)
import numpy as np
import time
import sys
if sys.version_info.major == 2:
import Tkinter as tk
else:
import tkinter as tk
UNIT = 40 # pixels
MAZE_H = 4 # grid height
MAZE_W = 4 # grid width
class Maze(tk.Tk, object):
def __init__(self):
super(Maze, self).__init__()
self.action_space = ['u', 'd', 'l', 'r']
self.n_actions = len(self.action_space)
self.title('maze')
self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT))
self._build_maze()
def _build_maze(self):
self.canvas = tk.Canvas(self, bg='white',
height=MAZE_H * UNIT,
width=MAZE_W * UNIT)
# create grids
for c in range(0, MAZE_W * UNIT, UNIT):
x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
self.canvas.create_line(x0, y0, x1, y1)
for r in range(0, MAZE_H * UNIT, UNIT):
x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
self.canvas.create_line(x0, y0, x1, y1)
# create origin
origin = np.array([20, 20])
# hell
hell1_center = origin + np.array([UNIT * 2, UNIT])
self.hell1 = self.canvas.create_rectangle(
hell1_center[0] - 15, hell1_center[1] - 15,
hell1_center[0] + 15, hell1_center[1] + 15,
fill='black')
# hell
hell2_center = origin + np.array([UNIT, UNIT * 2])
self.hell2 = self.canvas.create_rectangle(
hell2_center[0] - 15, hell2_center[1] - 15,
hell2_center[0] + 15, hell2_center[1] + 15,
fill='black')
# create oval
oval_center = origin + UNIT * 2
self.oval = self.canvas.create_oval(
oval_center[0] - 15, oval_center[1] - 15,
oval_center[0] + 15, oval_center[1] + 15,
fill='yellow')
# create red rect
self.rect = self.canvas.create_rectangle(
origin[0] - 15, origin[1] - 15,
origin[0] + 15, origin[1] + 15,
fill='red')
# pack all
self.canvas.pack()
def reset(self):
self.update()
time.sleep(0.5)
self.canvas.delete(self.rect)
origin = np.array([20, 20])
self.rect = self.canvas.create_rectangle(
origin[0] - 15, origin[1] - 15,
origin[0] + 15, origin[1] + 15,
fill='red')
# return observation
return self.canvas.coords(self.rect)
def step(self, action):
s = self.canvas.coords(self.rect)
base_action = np.array([0, 0])
if action == 0: # up
if s[1] > UNIT:
base_action[1] -= UNIT
elif action == 1: # down
if s[1] < (MAZE_H - 1) * UNIT:
base_action[1] += UNIT
elif action == 2: # right
if s[0] < (MAZE_W - 1) * UNIT:
base_action[0] += UNIT
elif action == 3: # left
if s[0] > UNIT:
base_action[0] -= UNIT
self.canvas.move(self.rect, base_action[0], base_action[1]) # move agent
s_ = self.canvas.coords(self.rect) # next state
# reward function
if s_ == self.canvas.coords(self.oval):
reward = 1
done = True
s_ = 'terminal'
elif s_ in [self.canvas.coords(self.hell1), self.canvas.coords(self.hell2)]:
reward = -1
done = True
s_ = 'terminal'
else:
reward = 0
done = False
return s_, reward, done
def render(self):
time.sleep(0.1)
self.update()
2)Off-policy n-step Sarsa 算法实现
import numpy as np
import pandas as pd
from maze_env import Maze
class OffSarsaN(object):
# n-step Off-policy Learning by Importance Sampling
def __init__(self, action_space):
self.nA = action_space
self.actions = list(range(action_space))
self.q_table = pd.DataFrame(columns=self.actions)
def check_state_exist(self, s):
if s not in self.q_table.index:
self.q_table = self.q_table.append(
pd.Series([0]*len(self.actions),
index=self.q_table.columns,
name=s)
)
def target_policy(self, s):
# target_policy is the greedy policy
self.check_state_exist(s)
A = self.target_policy_probs(s)
return np.random.choice(range(self.nA), p=A)
def target_policy_probs(self, s, epsilon=.1):
A = np.ones(self.nA, dtype=float) * epsilon / self.nA
best_action = np.argmax(self.q_table.loc[s, :])
A[best_action] += (1.0 - epsilon)
return A
def behaviour_policy(self, s):
# behaviour policy is the epsilon-greedy
self.check_state_exist(s)
A = self.behaviour_policy_probs(s)
return np.random.choice(range(self.nA), p=A)
def behaviour_policy_probs(self, s, epsilon=.3):
A = np.ones(self.nA, dtype=float) * epsilon / self.nA
best_action = np.argmax(self.q_table.loc[s, :])
A[best_action] += (1.0 - epsilon)
return A
if __name__ == '__main__':
env = Maze()
action_space = env.n_actions
RL = OffSarsaN(action_space)
n = 3
gamma = 0.9
alpha = 0.01
for episode in range(100):
buffer_s = []
buffer_a = []
buffer_r = []
state = env.reset()
action = RL.behaviour_policy(str(state))
buffer_s.append(str(state))
buffer_a.append(action)
T = 10000
t = 0
while True:
if t < T:
env.render()
state_, reward, done = env.step(action)
buffer_s.append(str(state_))
buffer_r.append(reward)
if state_ == 'terminal':
T = t + 1
else:
action_ = RL.behaviour_policy(str(state_))
buffer_a.append(action_)
action = action_
tao = t - n + 1
if tao >= 0:
rho = 1
for i in range(tao+1, min(tao+n, T)):
rho *= RL.target_policy_probs(buffer_s[i])[buffer_a[i]] /\
RL.behaviour_policy_probs(buffer_s[i])[buffer_a[i]]
G = 0
for i in range(tao+1, min(tao+n, T)+1):
G += gamma**(i-tao-1) * buffer_r[i-1]
if tao+n < T:
G += gamma**n * RL.q_table.loc[buffer_s[tao+n], buffer_a[tao+n]]
RL.q_table.loc[buffer_s[tao], buffer_a[tao]] += \
alpha * rho * (G - RL.q_table.loc[buffer_s[tao], buffer_a[tao]])
if tao == T-1:
break
t += 1
print('game over')
env.destroy()