图形化有助于更好的理解和记忆,图有点大7411 x 6078,内容有如下几个模块构成:
- Yolo4相对于Yolo3的改进总结。
- Yolo4详细的网络结构。
- Yolo4的输出物理意义。(跟YOLO3一样)
- Yolo4的anchor回归机制。(跟YOLO3一样)
- Yolo4的损失函数。(相对Yolo3,把其中定位损失部分,替换为CIOU-loss公式)
- 介绍一些损失函数发展历史:
- 定位损失:SmoothL1(Fast RCNN), IOU(2016), GIOU(2019), DIOU(2020), CIOU(2020)
- 分类和置信度损失:Focal Loss(2017)
具体内容如下:
下期再见!