Yolo4算法详解

图形化有助于更好的理解和记忆,图有点大7411 x 6078,内容有如下几个模块构成:

  1. Yolo4相对于Yolo3的改进总结
  2. Yolo4详细的网络结构
  3. Yolo4的输出物理意义。(跟YOLO3一样)
  4. Yolo4的anchor回归机制。(跟YOLO3一样)
  5. Yolo4的损失函数。(相对Yolo3,把其中定位损失部分,替换为CIOU-loss公式)
  6. 介绍一些损失函数发展历史:
    1. 定位损失:SmoothL1(Fast RCNN), IOU(2016), GIOU(2019), DIOU(2020), CIOU(2020)
    2. 分类和置信度损失:Focal Loss(2017)

具体内容如下:

 下期再见!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值