三角测量原理

本文探讨了三角测量原理在视觉定位中的应用,通过相似三角形理论,利用目标与传感器间的距离及角度信息,计算目标点的三维坐标。介绍了如何通过已知距离和角度求解目标距离,并进一步获取其坐标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:乐少行
链接:https://www.zhihu.com/question/27719009/answer/94892764
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

三角测量原理就是相似三角形,有多种变形。

我想你的机器人定位方法用的应该指的是视觉定位吧?所以关键在于求出目标和传感器间的距离d,然后通过自己建立的世界坐标系,利用相似关系可以得到目标点的三维坐标。

--------------------------------------------------------------

下面讨论利用三角函数来描述的三角测量法。

(下图和公式从维基百科搬运,我稍微再补充一下。)

 

如图所示的问题比较简单,要求船离海岸的距离d。我们可以把船视为质点C,并假设ABC在同一水平面内,

 

我们知道,已知两个角和共用边可以唯一确定一个三角形。图中AB间距离确定为l,∠CAB=α,∠CBA=β。l、α、β均已知,那么这个三角形已经确定了。

 

那么很容易列出下面的关系式

With l being the distance between A and B we have
l=d \left( \frac{1}{\tan\alpha}+\frac{1}{\tan\beta} \right) Using the trigonometric identities tan α = sin α / cos α and sin(α + β) = sin α cos β + cos α sin β, this is equivalent to:
l=d\left(\frac{\cos\alpha}{\sin\alpha}+\frac{\cos\beta}{\sin\beta}\right) l=d \frac{\sin(\alpha+\beta)}{\sin\alpha\sin\beta} therefore:
d=l \frac{\sin\alpha\sin\beta}{\sin(\alpha+\beta)}

现在d有了,假设C到AB的垂足为D。AD=d/tanα。如果以A点为原点建立坐标系,AB为x轴正向,DC为y正方向,z正方向向上。那么C点三维坐标就是(d/tanα, d, 0)。

### 双目相机三角测量原理 在计算机视觉领域,双目相机通过模拟人类双眼的工作方式来实现对空间物体位置的感知。当使用双目相机进行三角测量时,主要依赖于相似三角形原理[^1]。 #### 相似三角形原理的应用 假设存在一对已知间距\( B \) 的平行排列的摄像头(左摄像机L和右摄像机R),以及位于这两者前方某处的目标点P。目标点会在每台摄像头上形成对应的像点 \( p_L(x_l, y_l) \) 和 \( p_R(x_r, y_r) \),其中横坐标分别表示该点投影至各自图像平面上的位置。因为左右摄像机相对摆放方向相反,所以通常情况下有 \( x_l > 0 \), 而 \( x_r < 0 \)[^3]。 对于任意给定的空间点P及其映射后的像点p_L,p_R来说,在理想状况下它们会构成一系列相互之间保持比例关系的小型化版本——即所谓的“相似三角形”。利用这些几何特性就可以推导出关于深度z的一个简单表达式: \[ z = fB / (x_l - x_r) \] 这里f代表焦距长度;而分母部分则反映了视差(disparity),也就是同一个物理特征在不同视角下的水平位移程度。因此只要能够获取到准确的视差数据并结合其他参数即可求得实际距离信息[^2]。 为了提高精度与效率,还需要执行极线校正过程使两幅原始输入影像满足特定条件从而简化后续处理流程[^4]。这一步骤确保了即使是在非完美条件下也能获得较为可靠的三维重建效果。 ```python def calculate_depth(focal_length, baseline_distance, disparity): """ Calculate depth from stereo vision using triangulation. Args: focal_length (float): Focal length of the cameras used. baseline_distance (float): Distance between two camera centers. disparity (float): Horizontal displacement between corresponding points. Returns: float: Depth or distance to object point P. """ if disparity == 0: raise ValueError("Disparity cannot be zero.") return (focal_length * baseline_distance) / abs(disparity) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值