【机器人学】非对称3-SPR并联机器人逆运动学公式详细推导

前言

哈喽,这里是冷凝雨。
文章很长,请耐心阅读,如有帮助请三连!
转载请注明出处并私信。如有不足烦请指出~

引言

之前写了两篇和非对称3-SPR并联机器人有关的帖子,本次将展示公式的详细推导过程。

【Matlab】非对称3-SPR并联机器人正逆运动学
【Matlab】非对称3-SPR并联机器人工作空间求解

“非对称3-SPR并联机器人”里的非对称指的是三个球铰副非对称布置,但三个转动副是对称布置的。

网上和并联机器人相关的资料比较少,推导也很不靠谱,至于“非对称的”3-SPR并联机器人,应该只有我这里有~
希望这里的运动学推导能为大家带来一点帮助。

1. 运动学建模

这里展示了非对称3-SPR并联机器人的真实三维模型(图a)和结构简图(图b)。
非对称3-SPR并联机器人的真实三维模型和结构简图

1.1 概述

A 1 {{A}_{1}} A1 A 2 {{A}_{2}} A2 A 3 {{A}_{3}} A3为转动副, P 1 {{P}_{1}} P1 P 2 {{P}_{2}} P2 P 3 {{P}_{3}} P3 P 4 {{P}_{4}} P4为移动副, B 1 {{B}_{1}} B1 B 2 {{B}_{2}} B2 B 3 {{B}_{3}} B3为球铰副, q 1 {{q}_{1}} q1 q 2 {{q}_{2}} q2 q 3 {{q}_{3}} q3为对应的球铰副指向转动副的向量, q 4 {{q}_{4}} q4为并联机器人动平台坐标系原点 O P {{O}_{P}} OP指向云台坐标系原点 O T {{O}_{T}} OT的向量。

1.2 坐标系

为描述环境感知系统各组成部分的位置关系,对于非对称3-SPR并联机器人,这里定义以下几个直角坐标系:
(1)世界坐标系{W}
也称全局坐标系或基准坐标系,用来描述空间中物体在客观世界中的绝对位置。将并联机器静平台中心点定义为世界坐标系原点 O W {{O}_{W}} OW O W {{O}_{W}} OW与三个球铰的连线互成120°。 Y W {{Y}_{W}} YW轴负半轴经过球铰 B 3 {{B}_{3}} B3 Z W {{Z}_{W}} ZW轴垂直于静平台平面。
(2)动平台坐标系{P}
用来描述并联机器人动平台位姿的直角坐标系。并联机器人动平台坐标系原点 O P {{O}_{P}} OP为并联机器人动平台中心点,其为并联机器人三个转动副中点连线组成的等边三角形的中心。 Y P {{Y}_{P}} YP轴负半轴经过转动副 A 3 {{A}_{3}} A3中点, Z P {{Z}_{P}} ZP轴垂直于动平台平面。
在这里插入图片描述
(3)末端坐标系{T}
这指的是并联机器人所承载的设备被安装在
二自由度云台被安装在3-SPR并联机器人动平台移动副的末端,其姿态与坐标系{P}相同。坐标系{T}的原点 O T {{O}_{T}} OT为云台两个旋转轴的交线,其与坐标系{P}原点 O P {{O}_{P}} OP的距离取决于独立移动副的伸长量和云台的结构尺寸。

1.3 对运动学的定义

本文提出的机构可以认为是一个串并混合机构,因为在并联机器人的动平台中心处固联了一个额外的移动副 P 4 {{P}_{4}} P4

因此对本机构而言,逆运动学:当末端坐标系{T}相对于世界坐标系{W}变化时,移动副的变化规律。
如不需要额外的运动副 P 4 {{P}_{4}} P4,逆运动学:动平台坐标系{P}相对于世界坐标系{W}变化时,移动副的变化规律。

当然,因为实际的机构和理论建模不一样,比如实验设备的中心和 动平台坐标系{P} 的原点重合,而是有一段距离,那么可以将额外的移动副 P 4 {{P}_{4}} P4认定为一个常量,最终推导的还是 末端坐标系{T} 相对于 世界坐标系{W} 的关系。

2. 逆运动学

2.1 逆运动学公式的输入和输出

输入: 末端参考点 O P {{O}_{P}} OP坐标,动平台三个转动副外接圆的半径 r A {{r}_{A}} rA,三个转动副与世界坐标系原点的距离 r B i {{r}_{{{B}_{i}}}} rBi
输出: 三个球铰副和三个转动副的距离。

2.2 旋转矩阵基础

说到运动学,最重要的肯定是旋转矩阵了。这里简要讲一下,详细的请看其他大佬的文章,他们讲的更好。

两个坐标系的旋转变换可以分解为三次旋转变换,三次旋转变换的旋转角即为欧拉角。本文使用 Z − Y − X Z-Y-X ZYX欧拉角来描述并联机器人 动平台坐标系{P} 相对于 世界坐标系{W} 的旋转运动。
假设 动平台坐标系{P}世界坐标系{W} 的初始方位(姿态)相同。使 动平台坐标系{P} 先绕 Z P {{Z}_{P}} ZP轴旋转 α \alpha α角,再绕 Y P {{Y}_{P}} YP轴旋转 β \beta β角,最后绕 Z P {{Z}_{P}} ZP轴旋转 γ \gamma γ角。

使用 P W R {}_{P}^{W}R PWR表示与 Z − Y − X Z-Y-X ZYX欧拉角等价的旋转矩阵:

P W R = R ( Z , α ) R ( Y , β ) R ( X , γ ) = [ u x v x w x u y v y w y u z v z w z ] {}_{P}^{W}R=R(Z,\alpha )R(Y,\beta )R(X,\gamma )\text{=}\left[ \begin{matrix} {{u}_{x}} & {{v}_{x}} & {{w}_{x}} \\ {{u}_{y}} & {{v}_{y}} & {{w}_{y}} \\ {{u}_{z}} & {{v}_{z}} & {{w}_{z}} \\ \end{matrix} \right] PWR=R(Z,α)R(Y,β)R(X,γ)= uxuyuzvxvyvzwxwywz

式中:
u x = cos ⁡ α cos ⁡ β , v x = cos ⁡ α sin ⁡ β sin ⁡ γ − sin ⁡ α cos ⁡ γ , w x = cos ⁡ α sin ⁡ β cos ⁡ γ + sin ⁡ α sin ⁡ γ {{u}_{x}}=\cos \alpha \cos \beta, {{v}_{x}}=\cos \alpha \sin \beta \sin \gamma -\sin \alpha \cos \gamma, {{w}_{x}}=\cos \alpha \sin \beta \cos \gamma +\sin \alpha \sin \gamma ux=cosαcosβvx=cosαsinβsinγsinαcosγwx=cosαsinβcosγ+sinαsinγ u y = sin ⁡ α cos ⁡ β , v y = sin ⁡ α sin ⁡ β sin ⁡ γ + cos ⁡ α cos ⁡ γ , w y = sin ⁡ α sin ⁡ β cos ⁡ γ − cos ⁡ α sin ⁡ γ {{u}_{y}}=\sin \alpha \cos \beta, {{v}_{y}}=\sin \alpha \sin \beta \sin \gamma +\cos \alpha \cos \gamma ,{{w}_{y}}=\sin \alpha \sin \beta \cos \gamma -\cos \alpha \sin \gamma uy=sinαcosβvy=sinαsinβsinγ+cosαcosγwy=sinαsinβcosγcosαsinγ u z = − sin ⁡ β , v z = cos ⁡ β sin ⁡ γ , w z = cos ⁡ β cos ⁡ γ {{u}_{z}}=-\sin \beta, {{v}_{z}}=\cos \beta \sin \gamma, {{w}_{z}}=\cos \beta \cos \gamma uz=sinβvz=cosβsinγwz=cosβcosγ

他们满足以下的关系:
u x 2 + u y 2 + u z 2 = 1 , v x 2 + v y 2 + v z 2 = 1 , w x 2 + w y 2 + w z 2 = 1 u_{x}^{2}+u_{y}^{2}+u_{z}^{2}=1, v_{x}^{2}+v_{y}^{2}+v_{z}^{2}=1, w_{x}^{2}+w_{y}^{2}+w_{z}^{2}=1 ux2+uy2+uz2=1vx2+vy2+vz2=1wx2+wy2+wz2=1 u x 2 + v x 2 + w x 2 = 1 , u y 2 + v y 2 + w y 2 = 1 , u z 2 + u z 2 + w z 2 = 1 u_{x}^{2}+v_{x}^{2}+w_{x}^{2}=1, u_{y}^{2}+v_{y}^{2}+w_{y}^{2}=1, u_{z}^{2}+u_{z}^{2}+w_{z}^{2}=1 ux2+vx2+wx2=1uy2+vy2+wy2=1uz2+uz2+wz2=1 u x v x + u y v y + u z v z = 0 , v x w x + v y w y + v z w z = 0 , u x w x + u y w y + u z w z = 0 {{u}_{x}}{{v}_{x}}+{{u}_{y}}{{v}_{y}}+{{u}_{z}}{{v}_{z}}=0, {{v}_{x}}{{w}_{x}}+{{v}_{y}}{{w}_{y}}+{{v}_{z}}{{w}_{z}}=0, {{u}_{x}}{{w}_{x}}+{{u}_{y}}{{w}_{y}}+{{u}_{z}}{{w}_{z}}=0 uxvx+uyvy+uzvz=0vxwx+vywy+vzwz=0uxwx+uywy+uzwz=0 w x = v z u y − u z v y , w y = v x u z − u x v z , w z = v y u x − u y v x {{w}_{x}}={{v}_{z}}{{u}_{y}}-{{u}_{z}}{{v}_{y}}, {{w}_{y}}={{v}_{x}}{{u}_{z}}-{{u}_{x}}{{v}_{z}}, {{w}_{z}}={{v}_{y}}{{u}_{x}}-{{u}_{y}}{{v}_{x}} wx=vzuyuzvywy=vxuzuxvzwz=vyuxuyvx

这些都是后面化简公式需要用到的!

2.3 球铰副和转动副坐标

转动副 A i {{A}_{i}} Ai动平台坐标系{P} 中的坐标 P A i {}^{P}{{A}_{i}} PAi可以用下式表示:
P A i = [ r A cos ⁡ α i r A sin ⁡ α i 0 ]   ( i = 1 , 2 , 3 ) {}^{P}{{A}_{i}}=\left[ \begin{matrix} {{r}_{A}}\cos {{\alpha }_{i}} \\ {{r}_{A}}\sin {{\alpha }_{i}} \\ 0 \\ \end{matrix} \right]\text{ }(i=1,2,3) PAi= rAcosαirAsinαi0  (i=1,2,3)

式中: r A {{r}_{A}} rA为三个转动副与 O P {{O}_{P}} OP的距离, α i {{\alpha }_{i}} αi A i {{A}_{i}} Ai O P {{O}_{P}} OP的连线和 X P {{X}_{P}} XP的夹角, α 1 = 30 ∘ {{\alpha }_{1}}={{30}^{\circ }} α1=30 α 2 = 150 ∘ {{\alpha }_{2}}={{150}^{\circ }} α2=150 α 3 = 270 ∘ {{\alpha }_{3}}={{270}^{\circ }} α3=270。这里的 α i {{\alpha }_{i}} αi是已知的, r A {{r}_{A}} rA是根据我们机构而定的输入量,即动平台三个转动副外接圆的半径。
因为我们要推导运动学方程,这里不要将 r A {{r}_{A}} rA代入!让他以变量的形式存在!

球铰 B i {{B}_{i}} Bi世界坐标系{W} 中的坐标 W B i {}^{W}{{B}_{i}} WBi
W B i = [ r B i cos ⁡ β i r B i sin ⁡ β i 0 ]   ( i = 1 , 2 , 3 ) {}^{W}{{B}_{i}}=\left[ \begin{matrix} {{r}_{{{B}_{i}}}}\cos {{\beta }_{i}} \\ {{r}_{{{B}_{i}}}}\sin {{\beta }_{i}} \\ 0 \\ \end{matrix} \right]\text{ }(i=1,2,3) WBi= rBicosβirBisinβi0  (i=1,2,3)

式中, r B i {{r}_{{{B}_{i}}}} rBi B i {{B}_{i}} Bi O W {{O}_{W}} OW的距离, β i {{\beta }_{i}} βi B i {{B}_{i}} Bi O W {{O}_{W}} OW的连线和 X W {{X}_{W}} XW的夹角, β 1 = 30 ∘ {{\beta }_{1}}={{30}^{\circ }} β1=30 β 2 = 150 ∘ {{\beta }_{2}}={{150}^{\circ }} β2=150 β 3 = 270 ∘ {{\beta }_{3}}={{270}^{\circ }} β3=270。这里的 r B i {{r}_{{{B}_{i}}}} rBi是已知的, r B i {{r}_{{{B}_{i}}}} rBi即三个转动副与世界坐标系原点的距离,是根据我们机构而定的输入量。
因为我们要推导运动学方程,这里不要将 r B i {{r}_{{{B}_{i}}}} rBi代入!让他以变量的形式存在!

r B 1 {{r}_{{{B}_{1}}}} rB1 r B 2 {{r}_{{{B}_{2}}}} rB2 r B 3 {{r}_{{{B}_{3}}}} rB3可以是不相等的!非对称和对称的3-SPR并联机器人运动学推导主要区别在这里。
也因此会极大的增加后面化简的难度!

2.4 建立约束方程

l 1 {{l}_{1}} l1:由 A 3 {{A}_{3}} A3指向 A 2 {{A}_{2}} A2的向量, l 2 {{l}_{2}} l2:由 A 3 {{A}_{3}} A3指向 A 1 {{A}_{1}} A1的向量, l 3 {{l}_{3}} l3:由 A 2 {{A}_{2}} A2指向 A 1 {{A}_{1}} A1的向量
由3-SPR并联机器人的转动副约束关系可知, q 1 {{q}_{1}} q1 q 2 {{q}_{2}} q2 q 3 {{q}_{3}} q3分别垂直于 l 1 {{l}_{1}} l1 l 2 {{l}_{2}} l2 l 3 {{l}_{3}} l3

根据约束关系建立3-SPR并联机构的约束方程:
{ q 1 T × l 1 = 0 q 2 T × l 2 = 0 q 3 T × l 3 = 0 \left\{ \begin{matrix} {{q}_{1}}^{T}\times {{l}_{1}}=0 \\ {{q}_{2}}^{T}\times {{l}_{2}}=0 \\ {{q}_{3}}^{T}\times {{l}_{3}}=0 \\ \end{matrix} \right. q1T×l1=0q2T×l2=0q3T×l3=0
我们最后就要使用这个约束方程推导逆运动学!

(1) l i {{l}_{i}} li的公式表示为:
{ l 1 = W A 2 − W A 3 = P W R P A 2 − P W R P A 3 l 2 = W A 1 − W A 3 = P W R P A 1 − P W R P A 3 l 3 = [ u x u y u z ] T \left\{ \begin{matrix} {{l}_{1}}={^{W}{A}_{2}}-{^{W}{A}_{3}}={}_{P}^{W}R{}^{P}{{A}_{2}}-{}_{P}^{W}R{}^{P}{{A}_{3}}\\ {{l}_{2}}={^{W}{A}_{1}}-{^{W}{A}_{3}}={}_{P}^{W}R{}^{P}{{A}_{1}}-{}_{P}^{W}R{}^{P}{{A}_{3}} \\ {{l}_{3}}={{[\begin{matrix}{{u}_{x}} & {{u}_{y}} & {{u}_{z}} \\ \end{matrix}]}^{T}} \\ \end{matrix} \right. l1=WA2WA3=PWRPA2PWRPA3l2=WA1WA3=PWRPA1PWRPA3l3=[uxuyuz]T
这里 l 1 {{l}_{1}} l1 l 2 {{l}_{2}} l2里的变量我们在2.2章节已经推导好了,
这里的 l 3 {{l}_{3}} l3即为一个和 x {x} x轴平行的向量,直接用 x {x} x轴的向量代替,方便后面化简。
注意变量左上角的角标!指的是该变量在该坐标系下的坐标!

(2) q i {{q}_{i}} qi的公式表示为:
{ q 1 = W A 1 − W B 1 = P W R P A 1 + W O P − W B 1 q 2 = W A 2 − W B 2 = P W R P A 2 + W O P − W B 2 q 3 = W A 3 − W B 3 = P W R P A 3 + W O P − W B 3 \left\{ \begin{matrix} & {{q}_{1}}={^{W}{A}_{1}}-{^{W}{B}_{1}}={}_{P}^{W}R{}^{P}{{A}_{1}}+{}^{W}{{O}_{P}}-{}^{W}{{B}_{1}} \\ & {{q}_{2}}={^{W}{A}_{2}}-{^{W}{B}_{2}}={}_{P}^{W}R{}^{P}{{A}_{2}}+{}^{W}{{O}_{P}}-{}^{W}{{B}_{2}} \\ & {{q}_{3}}={^{W}{A}_{3}}-{^{W}{B}_{3}}={}_{P}^{W}R{}^{P}{{A}_{3}}+{}^{W}{{O}_{P}}-{}^{W}{{B}_{3}} \end{matrix} \right. q1=WA1WB1=PWRPA1+WOPWB1q2=WA2WB2=PWRPA2+WOPWB2q3=WA3WB3=PWRPA3+WOPWB3

接下来要做的就是把所有东西带入到约束方程里。
代入的时候要全部用变量表达式带入,最后再一起化简!

2.5 化简

从后往前化推,最终带入到约束方程里。

输入: 末端参考点 O P {{O}_{P}} OP坐标,动平台三个转动副外接圆的半径 r A {{r}_{A}} rA,三个转动副与世界坐标系原点的距离 r B i {{r}_{{{B}_{i}}}} rBi
输出: 三个球铰副和三个转动副的距离。

(1)化简思路:

  1. 约束方程的未知量: q i {{q}_{i}} qi l i {{l}_{i}} li

  2. 表示 l i {{l}_{i}} li的方程的未知量: P A i {^{P}{A}_{i}} PAi P W R {}_{P}^{W}R PWR;表示 q i {{q}_{i}} qi的方程的未知量: P A i {^{P}{A}_{i}} PAi P W R {}_{P}^{W}R PWR W B i {}^{W}{{B}_{i}} WBi

  3. 表示 P A i {^{P}{A}_{i}} PAi的方程的未知量: r A {{r}_{A}} rA α i {{\alpha }_{i}} αi是常量,直接带入! r A {{r}_{A}} rA是我们的输入变量,就保持使用 r A {{r}_{A}} rA代入)

  4. 表示 P W R {}_{P}^{W}R PWR的方程的未知量: u x {{u}_{x}} ux u y {{u}_{y}} uy u z {{u}_{z}} uz v x {{v}_{x}} vx v y {{v}_{y}} vy v z {{v}_{z}} vz w x {{w}_{x}} wx w y {{w}_{y}} wy w z {{w}_{z}} wz
    (这些都可以用欧拉角来表示,为了化简方便,就先保持用它们带入)

  5. 表示 W B i {^{W}{B}_{i}} WBi的方程的未知量: r B i {{r}_{{{B}_{i}}}} rBi β i {{\beta }_{i}} βi是常量,直接带入! r B i {{r}_{{{B}_{i}}}} rBi是我们的输入变量,就保持使用 r B i {{r}_{{{B}_{i}}}} rBi代入)

根据以上的化简思路,输入和输出都梳理清了,开始带入吧!

(2)带入约束方程

(3)展开、化简

展开上面的矩阵,得下式:
{ − 3 2 ( X O P u x + Y O P u y + Z O P u z ) + 3 2 ( X O P v x + Y O P v y + Z O P v z ) + 3 4 r B 1 ( u x − v y ) + 3 4 r B 1 ( u y − 3 v x ) = 0 3 2 ( u x X O P + u y Y O P + u z Z O P ) + 3 2 ( v x X O P + v y Y O P + v z Z O P ) + 3 4 r B 2 ( u x − v y ) + 3 4 r B 2 ( 3 v x − u y ) = 0 X O P u x + Y O P u y + Z O P u z = − r B 3 u y \left\{ \begin{align} & -\frac{\sqrt{3}}{2}\left( {{X}_{{{O}_{P}}}}{{u}_{x}}+{{Y}_{{{O}_{P}}}}{{u}_{y}}+{{Z}_{{{O}_{P}}}}{{u}_{z}} \right)+\frac{3}{2}\left( {{X}_{{{O}_{P}}}}{{\text{v}}_{x}}+{{Y}_{{{O}_{P}}}}{{v}_{y}}+{{Z}_{{{O}_{P}}}}{{v}_{z}} \right)+\frac{3}{4}{{\text{r}}_{{{B}_{1}}}}\left( {{u}_{x}}-{{v}_{y}} \right)+\frac{\sqrt{3}}{4}{{\text{r}}_{{{B}_{1}}}}\left( {{u}_{y}}-3{{v}_{x}} \right)\text{=}0 \\ & \frac{\sqrt{3}}{2}\left( {{u}_{x}}{{X}_{{{O}_{P}}}}+{{u}_{y}}{{Y}_{{{O}_{P}}}}+{{u}_{z}}{{Z}_{{{O}_{P}}}} \right)+\frac{3}{2}\left( {{\text{v}}_{x}}{{X}_{{{O}_{P}}}}+{{v}_{y}}{{Y}_{{{O}_{P}}}}+{{v}_{z}}{{Z}_{{{O}_{P}}}} \right)+\frac{3}{4}{{\text{r}}_{{{B}_{2}}}}\left( {{u}_{x}}-{{v}_{y}} \right)+\frac{\sqrt{3}}{4}{{\text{r}}_{{{B}_{2}}}}\left( 3{{v}_{x}}-{{u}_{y}} \right)\text{=}0 \\ &{{X}_{{{O}_{P}}}}{{u}_{x}}+{{Y}_{{{O}_{P}}}}{{u}_{y}}+{{Z}_{{{O}_{P}}}}{{u}_{z}}=-{{r}_{{{B}_{3}}}}{{u}_{y}} \\ \end{align} \right. 23 (XOPux+YOPuy+ZOPuz)+23(XOPvx+YOPvy+ZOPvz)+43rB1(uxvy)+43 rB1(uy3vx)=023 (uxXOP+uyYOP+uzZOP)+23(vxXOP+vyYOP+vzZOP)+43rB2(uxvy)+43 rB2(3vxuy)=0XOPux+YOPuy+ZOPuz=rB3uy

继续化简,得下式:
{ X O P v x + Y O P v y + Z O P v z = − 3 3 r B 3 u y − 1 2 r B 1 ( u x − v y ) − 3 6 r B 1 ( u y − v x ) X O P v x + Y O P v y + Z O P v z = 3 3 r B 3 u y − 1 2 r B 2 ( u x − v y ) − 3 6 r B 2 ( 3 v x − u y ) X O P u x + Y O P u y + Z O P u z = − r B 3 u y \left\{ \begin{align} & {{X}_{{{O}_{P}}}}{{\text{v}}_{x}}+{{Y}_{{{O}_{P}}}}{{v}_{y}}+{{Z}_{{{O}_{P}}}}{{v}_{z}}\text{=}-\frac{\sqrt{3}}{3}{{r}_{{{B}_{3}}}}{{u}_{y}}-\frac{1}{2}{{\text{r}}_{{{B}_{1}}}}\left( {{u}_{x}}-{{v}_{y}} \right)-\frac{\sqrt{3}}{6}{{\text{r}}_{{{B}_{1}}}}\left( {{u}_{y}}-{{v}_{x}} \right) \\ & {{X}_{{{O}_{P}}}}{{\text{v}}_{x}}+{{Y}_{{{O}_{P}}}}{{v}_{y}}+{{Z}_{{{O}_{P}}}}{{v}_{z}}\text{=}\frac{\sqrt{3}}{3}{{r}_{{{B}_{3}}}}{{u}_{y}}-\frac{1}{2}{{\text{r}}_{{{B}_{2}}}}\left( {{u}_{x}}-{{v}_{y}} \right)-\frac{\sqrt{3}}{6}{{\text{r}}_{{{B}_{2}}}}\left( 3{{v}_{x}}-{{u}_{y}} \right) \\ & {{X}_{{{O}_{P}}}}{{u}_{x}}+{{Y}_{{{O}_{P}}}}{{u}_{y}}+{{Z}_{{{O}_{P}}}}{{u}_{z}}=-{{r}_{{{B}_{3}}}}{{u}_{y}} \\ \end{align} \right. XOPvx+YOPvy+ZOPvz=33 rB3uy21rB1(uxvy)63 rB1(uyvx)XOPvx+YOPvy+ZOPvz=33 rB3uy21rB2(uxvy)63 rB2(3vxuy)XOPux+YOPuy+ZOPuz=rB3uy
联立 2.2 旋转矩阵基础 中的公式,继续化简:
{ X O P = − 6 w x Z O P − [ 3 ( u x − v y ) + 3 ( 3 v x − u y ) ] u y r B 2 + 2 ( 3 u y + 3 v y ) u y r B 3 − 6 w z Y O P = 6 w y Z O P − [ 3 ( u x − v y ) + 3 ( 3 v x − u y ) ] u x r B 2 + 2 ( 3 u x + 3 v x ) u y r B 3 6 w z β = tan ⁡ − 1 ( 3 3 r B 1 + r B 2 sin ⁡ γ sin ⁡ α + 3 r B 2 − r B 1 ( cos ⁡ α − cos ⁡ γ ) 3 r B 1 + r B 2 ( 3 cos ⁡ γ + cos ⁡ α ) + 3 r B 2 − r B 1 sin ⁡ γ sin ⁡ α + 4 3 r B 3 cos ⁡ α ) \left\{ \begin{align} & {{X}_{{{O}_{P}}}}=\frac{-6{{w}_{x}}{{Z}_{{{O}_{P}}}}-\left[ 3\left( {{u}_{x}}-{{v}_{y}} \right)+\sqrt{3}\left( 3{{v}_{x}}-{{u}_{y}} \right) \right]{{u}_{y}}{{r}_{{{B}_{2}}}}+2\left( \sqrt{3}{{u}_{y}}+3{{v}_{y}} \right){{u}_{y}}{{r}_{{{B}_{3}}}}}{-6{{w}_{z}}} \\ & {{Y}_{{{O}_{P}}}}=\frac{6{{w}_{y}}{{Z}_{{{O}_{P}}}}-\left[ 3\left( {{u}_{x}}-{{v}_{y}} \right)+\sqrt{3}\left( 3{{v}_{x}}-{{u}_{y}} \right) \right]{{u}_{x}}{{r}_{{{B}_{2}}}}+2\left( \sqrt{3}{{u}_{x}}+3{{v}_{x}} \right){{u}_{y}}{{r}_{{{B}_{3}}}}}{6{{w}_{z}}} \\ & \beta ={{\tan }^{-1}}\left( \frac{3\sqrt{3}{{\text{r}}_{{{B}_{1}}}}+{{\text{r}}_{{{B}_{2}}}}\sin \gamma \sin \alpha +3{{\text{r}}_{{{B}_{2}}}}-{{\text{r}}_{{{B}_{1}}}}\left( \cos \alpha -\cos \gamma \right)}{\sqrt{3}{{\text{r}}_{{{B}_{1}}}}+{{\text{r}}_{{{B}_{2}}}}(3\cos \gamma +\cos \alpha )+3{{\text{r}}_{{{B}_{2}}}}-{{\text{r}}_{{{B}_{1}}}}\sin \gamma \sin \alpha +4\sqrt{3}{{r}_{{{B}_{3}}}}\cos \alpha } \right) \\ \end{align} \right. XOP=6wz6wxZOP[3(uxvy)+3 (3vxuy)]uyrB2+2(3 uy+3vy)uyrB3YOP=6wz6wyZOP[3(uxvy)+3 (3vxuy)]uxrB2+2(3 ux+3vx)uyrB3β=tan1(3 rB1+rB2(3cosγ+cosα)+3rB2rB1sinγsinα+43 rB3cosα33 rB1+rB2sinγsinα+3rB2rB1(cosαcosγ))

OK,推导到这里就结束了,当然这和我们前面定义的输入和输出是有些出入的。
但根据这个化简后的结果,可以很容易的推导出我们想要的输入和输出。

2.6 运动副伸长量和 W Z O P {}^{W}{{Z}_{{{O}_{P}}}} WZOP α \alpha α γ \gamma γ的关系

3-SPR并联机器人三个移动副的长度可以表示为:
q i 2 = ( X A i − X B i ) 2 + ( Y A i − Y B i ) 2 + ( Z A i − Z B i ) 2   ( i = 1 , 2 , 3 ) {{q}_{i}}^{2}={{({{X}_{{{A}_{i}}}}-{{X}_{{{B}_{i}}}})}^{2}}+{{({{Y}_{{{A}_{i}}}}-{{Y}_{{{B}_{i}}}})}^{2}}+{{({{Z}_{{{A}_{i}}}}-{{Z}_{{{B}_{i}}}})}^{2}}\text{ }(i=1,2,3) qi2=(XAiXBi)2+(YAiYBi)2+(ZAiZBi)2 (i=1,2,3)

结合上式和式(7)、(8)、(9):
{ q 1 2 = r A 2 + r B 1 2 + X O P 2 + Y O P 2 + Z O P 2 + 3 r A ( u x X O P + u y Y O P + u z Z O P ) + r A ( v x X O P + v y Y O P + v z Z O P ) − 1 2 r A r B 1 ( 3 u x + 3 u y + 3 v x + v y ) − r B 1 ( 3 X O P + Y O P ) q 2 2 = r A 2 + r B 2 2 + X O P 2 + Y O P 2 + Z O P 2 − 3 r A ( u x X O P + u y Y O P + u z Z O P ) + r A ( v x X O P + v y Y O P + v z Z O P ) − 1 2 r A r B 2 ( 3 u x − 3 u y − 3 v x + v y ) + r B 2 ( 3 X O P − Y O P ) q 3 2 = r A 2 + r B 3 2 + X O P 2 + Y O P 2 + Z O P 2 − 2 r A ( v x X O P + v y Y O P + v z Z O P ) − 2 r A r B 3 v y + 2 r B 3 Y O P \left\{ \begin{align} & {{q}_{1}}^{2}={{r}_{A}}^{2}+{{r}_{{{B}_{1}}}}^{2}+{{X}_{{{O}_{P}}}}^{2}+{{Y}_{{{O}_{P}}}}^{2}+{{Z}_{{{O}_{P}}}}^{2}+\sqrt{3}{{r}_{A}}({{u}_{x}}{{X}_{{{O}_{P}}}}+{{u}_{y}}{{Y}_{{{O}_{P}}}}+{{u}_{z}}{{Z}_{{{O}_{P}}}}) +{{r}_{A}}({{v}_{x}}{{X}_{{{O}_{P}}}}+{{v}_{y}}{{Y}_{{{O}_{P}}}}+{{v}_{z}}{{Z}_{{{O}_{P}}}})-\frac{1}{2}{{r}_{A}}{{r}_{{{B}_{1}}}}(3{{u}_{x}}+\sqrt{3}{{u}_{y}}+\sqrt{3}{{v}_{x}}+{{v}_{y}})-{{r}_{{{B}_{1}}}}(\sqrt{3}{{X}_{{{O}_{P}}}}+{{Y}_{{{O}_{P}}}}) \\ & {{q}_{2}}^{2}={{r}_{A}}^{2}+{{r}_{{{B}_{2}}}}^{2}+{{X}_{{{O}_{P}}}}^{2}+{{Y}_{{{O}_{P}}}}^{2}+{{Z}_{{{O}_{P}}}}^{2}-\sqrt{3}{{r}_{A}}({{u}_{x}}{{X}_{{{O}_{P}}}}+{{u}_{y}}{{Y}_{{{O}_{P}}}}+{{u}_{z}}{{Z}_{{{O}_{P}}}}) +{{r}_{A}}({{v}_{x}}{{X}_{{{O}_{P}}}}+{{v}_{y}}{{Y}_{{{O}_{P}}}}+{{v}_{z}}{{Z}_{{{O}_{P}}}})-\frac{1}{2}{{r}_{A}}{{r}_{{{B}_{2}}}}(3{{u}_{x}}-\sqrt{3}{{u}_{y}}-\sqrt{3}{{v}_{x}}+{{v}_{y}})+{{r}_{{{B}_{2}}}}(\sqrt{3}{{X}_{{{O}_{P}}}}-{{Y}_{{{O}_{P}}}}) \\ & {{q}_{3}}^{2}={{r}_{A}}^{2}+{{r}_{{{B}_{3}}}}^{2}+{{X}_{{{O}_{P}}}}^{2}+{{Y}_{{{O}_{P}}}}^{2}+{{Z}_{{{O}_{P}}}}^{2}-2{{r}_{A}}({{v}_{x}}{{X}_{{{O}_{P}}}}+{{v}_{y}}{{Y}_{{{O}_{P}}}}+{{v}_{z}}{{Z}_{{{O}_{P}}}})-2{{r}_{A}}{{r}_{{{B}_{3}}}}{{v}_{y}}+2{{r}_{{{B}_{3}}}}{{Y}_{{{O}_{P}}}} \\ \end{align} \right. q12=rA2+rB12+XOP2+YOP2+ZOP2+3 rA(uxXOP+uyYOP+uzZOP)+rA(vxXOP+vyYOP+vzZOP)21rArB1(3ux+3 uy+3 vx+vy)rB1(3 XOP+YOP)q22=rA2+rB22+XOP2+YOP2+ZOP23 rA(uxXOP+uyYOP+uzZOP)+rA(vxXOP+vyYOP+vzZOP)21rArB2(3ux3 uy3 vx+vy)+rB2(3 XOPYOP)q32=rA2+rB32+XOP2+YOP2+ZOP22rA(vxXOP+vyYOP+vzZOP)2rArB3vy+2rB3YOP

综上所述,对于球铰位置变化的3-SPR并联机构,当已知动平台姿态常量中的 W Z O P {}^{W}{{Z}_{{{O}_{P}}}} WZOP α \alpha α γ \gamma γ,可以求得其在当前姿态下的三个移动副伸长量,即其位置逆解。

2.7 考虑移动副 P 4 {{P}_{4}} P4

上面的步骤根本没有考虑移动副 P 4 {{P}_{4}} P4。因为移动副 P 4 {{P}_{4}} P4的长度改变,对于3-SPR并联机器人来说,其 动平台坐标系{P} 的坐标原点就变了。

因此在进行上面的逆运动学求解之前,需要确定好 P 4 {{P}_{4}} P4的长度,在该长度下求解逆运动学。

使用 q 4 {{q}_{4}} q4来表示由 动平台坐标系{P} 原点 O P {{O}_{P}} OP指向 末端坐标系{T} 原点 O T {{O}_{T}} OT的向量,则:
W O P = W O H − q 4 {}^{W}{{O}_{P}}={}^{W}{{O}_{H}}-{{q}_{4}} WOP=WOHq4

综上:对于工作空间内的任意一点,3-SPR并联机构的逆解是唯一的。但当在其末端布置一个移动副后,其逆解不是唯一的。随着移动副 P 4 {{P}_{4}} P4伸长量 ∣ q 4 ∣ \left| {{q}_{4}} \right| q4取值的不同,3-SPR并联机器人的移动副 P 1 {{P}_{1}} P1 P 2 {{P}_{2}} P2 P 3 {{P}_{3}} P3的伸长量 ∣ q 1 ∣ \left| {{q}_{1}} \right| q1 ∣ q 2 ∣ \left| {{q}_{2}} \right| q2 ∣ q 3 ∣ \left| {{q}_{3}} \right| q3也是不同的。

2.8 使用末端坐标作为输入

3-SPR并联机器人是一个三自由度的并联机器人。空间中一共有六个自由度,根据上面的推导结果(三元一次方程),当我们已知三个自由度,就一定可以知道另外三个自由度。

因此,要想使用末端坐标作为输入,其实就是求解三元一次方程。这里是使用Matlab来求解的,请见:

【Matlab】非对称3-SPR并联机器人正逆运动学

结束语

本文到这里就结束了,后续会根据反馈修改内容~
后面有时间了还会把正运动学的东西写出来。
如有帮助请三连~

祝兄弟们科研顺利!
谢谢观看!

  • 21
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值