论文阅读 [TPAMI-2022] Learning Representations for Facial Actions From Unlabeled Videos

无监督学习下面部动作表征:TAE在未标记视频中的应用
本文介绍了一种名为TAE的双循环自动编码器,它利用未标记视频中的面部动作位移,通过自监督学习策略学习区分性的动作特征表示,有效降低标注成本。实验表明,TAE在表情识别任务上表现优秀,能与监督方法媲美。此外,TAE还展示了解耦面部动作与头部运动的能力。

论文阅读 [TPAMI-2022] Learning Representations for Facial Actions From Unlabeled Videos

论文搜索(studyai.com)

搜索论文: Learning Representations for Facial Actions From Unlabeled Videos

搜索论文: http://www.studyai.com/search/whole-site/?q=Learning+Representations+for+Facial+Actions+From+Unlabeled+Videos

关键字(Keywords)

Gold; Face; Feature extraction; Videos; Magnetic heads; Task analysis; Facial action unit detection; self-supervised learning; representation learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值