目标检测---神经网络的参数更新过程(正向与反向)

目标检测—神经网络的参数更新过程(正向与反向)

在tf代码框架中,肯定少不了一个loss和优化器的构建~那么到底是如何进行更新参数的呢?
这篇blog举个实例来说明其中的更新过程~~

思路

神经网络的一种求解W的算法,分为信号“正向传播(FP)”求损失,“反向传播(BP)”回传误差;根据误差值修改每层的权重,继续迭代,直到参数更新到固定值的时候,预测值与真实值的误差最小。
在这里插入图片描述
下面随便举一个栗子来说明~
在这里插入图片描述

假设有一个样本数据,它有两个特征(L1,L2),同时,假设每个样本有两个输出(O1,O2),w和b初始值随机给定。

正向过程

在这里插入图片描述

net:是指h1经过L_1和L_2经过混合计算之后的值
out:net结果经过sigmoid函数转换

其实,这个时候,我们可以得到第一次FP的o1和o2的值
在这里插入图片描述
这里,采用的是均方差损失函数
在这里插入图片描述
计算第一次正向传播之后得到的损失值~

反向过程

在这里插入图片描述
这里其实就是应用链式求导~
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
以上是对最后一层的参数的更新
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进我的收藏吃灰吧~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值