目标检测—神经网络的参数更新过程(正向与反向)
在tf代码框架中,肯定少不了一个loss和优化器的构建~那么到底是如何进行更新参数的呢?
这篇blog举个实例来说明其中的更新过程~~
思路
神经网络的一种求解W的算法,分为信号“正向传播(FP)”求损失,“反向传播(BP)”回传误差;根据误差值修改每层的权重,继续迭代,直到参数更新到固定值的时候,预测值与真实值的误差最小。
下面随便举一个栗子来说明~
假设有一个样本数据,它有两个特征(L1,L2),同时,假设每个样本有两个输出(O1,O2),w和b初始值随机给定。
正向过程
net:是指h1经过L_1和L_2经过混合计算之后的值
out:net结果经过sigmoid函数转换
其实,这个时候,我们可以得到第一次FP的o1和o2的值
这里,采用的是均方差损失函数
计算第一次正向传播之后得到的损失值~
反向过程
这里其实就是应用链式求导~
以上是对最后一层的参数的更新