量化交易策略研发的三个层次

最近调研了一些投资公司,发现一些人说自己做的是量化交易,却搞不清楚到底什么是量化交易。

小编是个很爱学习的人,为了弄清楚什么事量化交易,特意查百度逛知乎,我是从这个问题开始的:

程序化交易是量化交易吗?

这里小编先把几个概念总结一下:

程序化交易

或者自动化交易,是将策略交由计算机执行的交易模式。量化交易中,不少交易是通过计算机自动执行的,但两者不能划等号。

对冲交易

更多说的是一种交易理念,而非具体的策略。

量化交易

更多是基于数据和历史统计基础,制定的一些交易策略。哪怕不用计算机执行,但基于交易因素的数量变化引发的交易,都可以叫做量化交易。

而后,小编在知乎上扒到一段文字,介绍了量化交易的策略研发方法,可以比较好的解答不同概念之间的关系,以及量化策略的进阶。作者将量化策略研发分成三个层次:

第一类:传统策略量化

很久以前,交易员们就开始做趋势策略、反转策略、剥头皮策略、做市策略等各种不同风格的策略,只不过那时是手工操作,或者半自动化。随着市场发展技术成熟,量化交易把这些策略的研发和执行自动化了,从而提高了研发效率和水平、降低了交易成本,较大程度的排除了人的不稳定因素。

这类交易,可以说是利用技术来提高原有策略的研发和执行,并且交易频率和规模也有了变化,但本质上并不算崭新的策略类别,以前赚钱的策略也许能赚的多一些,亏钱的策略,量化也不能把他变成赚钱,这就是【思路错了量化也救不了你】

目前国内多数量化交易都属于此类。

第二类:科学技术驱动策略

纯粹或很大程度上基于技术(technologies)差别的策略。这个类别也有一定历史,但真正变成一个庞大且引人注目的策略类别,则是在近10年计算机技术的飞速发展过程中产生的。常见的情形是,某机构因为采用的算法效率更高,计算机硬件更强大(超级计算机),产生了细微的速度和计算优势,从而在交易上抢得先机,并运用自动化交易频繁交易大量产品,用巨大的交易量产生稳定的收益。这类策略中IT技术和科学模型起了很关键的作用。这就是【技术就是你的思路】

举个例子:

较早开始高频交易的Tradebot就是这类策略的典型运用者,在2002年就达到了每天一亿个订单,差不多在那个时候很多传统做市商被Tradebot和Getco这样的新型电子做市商挤出市场,后来Tradebot和Getco同样一路用技术碾压其它电子做市商竞争对手。

在2005年, Tradebot 剥离了BATS Global Markets,也就是现在美国第三大股票市场BATS。而1999年Tradebot刚成立时,工作室地点是美国农村Kansas City的一间小地下室,里面阴暗潮湿,只有5个交易员坐在电脑屏幕前监控交易,那时每台电脑上都配备了一套叫着“Tradebot”的软件。而Getco 对策略的运用更广,野心更大。2012年,也是老牌做市商的 Knight 因技术故障,向纽交所发送大量错误order,导致公司巨亏4.4亿美元,股价两个交易日暴跌七成,被Getco以18亿美元价格收购。

人们常对西蒙斯文艺复兴的大奖章基金长期持续的高回报印象深刻,而实际上不太为媒体所知的是 Tradebot 常年保持每天(而不是每月或每年)盈利,not even one single losing day,原因是文艺复兴有很多新基金要向外部投资者融资(赚钱的大奖章很早停止了外部融资,而实际新基金表现比大奖章差很多),需要做一定程度的IR,而Tradebot不对外部投资者开放,自己低调赚钱,这也是HFT很普遍的特点。如果不是市场几次出现大动荡,HFT被揪出来当替罪羊,媒体口诛笔伐,基本是没有多少人知道这个低调类别的存在。

这一类,国内已经有一小批类似的交易者进入,他们深入研究交易规则和市场结构,制定相应的高频策略,配合高效软件硬件,争取积少成多的盈利。

第三类:新型量化策略

这类策略则是得益于计算机技术的发展,而慢慢发展起来的策略类别。它不完全是基于执行的技术优势,更多是利用技术研发出新策略。例如统计套利,需要较多计算机计算资源进行数据挖掘、模式识别,这在以前仅仅靠人力是难以胜任的。IT技术的发展和成本的降低使得这些策略的研发得以可行。这就是【技术产生新策略】

这一类目前国内还处于萌芽期。

拓展阅读:

1.一个量化策略师的自白(好文强烈推荐)

2.市面上经典的量化交易策略都在这里了!(源码)

3.期货/股票数据大全查询(历史/实时/Tick/财务等)

4.干货| 量化金融经典理论、重要模型、发展简史大全

5.从量化到高频交易,不可不读的五本书

6.高频交易四大派系大揭秘

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 好的,这是一个关于如何用 Python 写一个量化交易策略的简单示例。 首先,需要准备好所需的数据。这可以通过使用量化交易软件或者第三方数据源来获取。接下来,你可以使用 Python 的 pandas 库来处理数据并进行分析。 然后,你需要定义你的交易策略。这可以根据市场情况,你的风险承受能力以及其他因素来决定。比如说,你可以使用技术分析工具来确定买入或卖出的时机,或者使用机器学习模型来预测市场走势。 最后,你可以使用 Python 的量化交易库(比如 pyalgotrade、zipline 等)来执行你的交易策略。这些库通常会提供许多实用的功能,比如自动化交易、模拟交易等。 希望这些信息能帮到你! ### 回答2: 量化交易是基于程序化交易的一种交易方法,使用统计学和数学模型来进行决策。Python是一种功能强大且易于学习的编程语言,非常适合编写量化交易策略。 编写一个量化交易策略的主要步骤包括: 1. 数据获取:使用Python的数据接口或API来获取金融市场的实时行情数据。可以使用Python的相关库,如pandas和numpy来进行数据分析和处理。 2. 策略开发:根据市场需求和自己的投资理念,采用相关的量化交易策略方法对数据进行分析和建模,确定交易信号。常用的策略包括均值回归、趋势跟随和市场中性等。 3. 回测测试:使用历史数据对策略进行回测,评估策略的盈利能力和风险水平。可以使用Python的回测框架,如zipline或backtrader来进行回测,计算策略的平均收益率、夏普比率和最大回撤等指标。 4. 实盘交易:在经过充分的回测测试后,可以将策略应用到实盘交易中。可以使用Python的交易API来进行实时交易操作。需要注意风险管理,设置止损和止盈等交易规则。 5. 策略优化:根据实际交易情况,及时调整和优化策略。可以根据交易数据和市场信息,采用机器学习和人工智能的方法来优化策略。 使用Python编写量化交易策略具有很多优势: - Python语言简洁易读,易于理解和维护; - Python拥有丰富的第三方库和工具,如pandas、numpy和scikit-learn,用于数据处理和机器学习; - Python拥有成熟的量化交易框架和回测工具,如zipline和backtrader,方便快速开发和测试策略; - Python可以与金融市场的数据接口和交易API进行无缝对接; - Python具有广泛的社区支持和丰富的学习资源,便于解决问题和提高开发效率。 总之,使用Python编写量化交易策略可以提升交易效率和盈利能力,是目前金融市场中的一种重要趋势。 ### 回答3: 量化交易是通过使用计算机程序和数学模型来制定投资决策的一种交易策略。Python是一种功能强大且易于学习的编程语言,广泛应用于量化交易领域。下面是一个使用Python编写的简单量化交易策略的示例: 首先,我们需要安装Python的相关库,如pandas用于数据处理,numpy用于数值计算,以及其他一些量化交易库如zipline或者backtrader。 接下来,我们需要获取相应的金融数据,可以从在线API获取或者通过下载历史数据。使用pandas库可以将数据加载到DataFrame对象中,并进行数据清洗和预处理。 然后,我们可以基于所选择的交易策略进行指标计算。例如,使用移动平均线策略,我们可以计算股票价格的短期和长期移动平均,并通过比较两者的关系来产生买入或卖出信号。 接下来,我们可以使用条件语句来执行交易决策。例如,如果短期移动平均线向上穿过长期移动平均线,则产生买入信号。我们可以使用Python的条件语句来执行交易操作,如购买股票或卖出现有持仓。 最后,我们可以使用Python的可视化库如matplotlib来绘制图表,以便对交易结果进行分析和可视化。 总之,使用Python编写量化交易策略可以通过结合数据处理、数值计算、条件语句和可视化等功能,帮助投资者自动化制定投资决策并对交易策略进行测试和优化。这只是一个简单的示例,实际的量化交易策略涉及更多复杂的算法和技术,需要深入的领域知识和开发经验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值