第一步,看量化基金的风格
“好的量化基金”的标准是不一样的,比较基金一定要对同一风格的基金进行对比。例如业绩比较基准是沪深300和中证500的量化基金风格是完全不一样的。在对比量化基金之前,投资者应该确定基金的风格---是大盘、中盘还是小盘,偏股还是偏债。
量化基金业绩分化是跟量化因子有关,量化其实提供的是框架,至于需要选中小创,还是低估值,最终取决于模型设计者和投研团队的想法。有些人的投资风格是偏小市值、偏博弈、偏技术面、偏流动性,那么其持股时间就短,可能半个月、一个月就需要换手。如果风格更加偏重于基本面,希望和公司一起成长,收益实现需要的时间就会比较长,换手率也会低一些。
如果一个基金没有自己的风格,或者风格经常变换,这样的基金一般很难做出成绩,不值得我们去投资。
对于市场的风格,我们要予以持续关注。当我们识别出市场风格后,就要匹配相应的基金。
第二步,查看基金经理是否有量化背景
量化基金的基金经理最好是具备数量化分析、金融工程的学术背景或从业背景。量化基金有理工科背景是选择量化基金的一个重要标准。
同时,量化投资讲究的是团队实力,该基金公司的量化团队的实力同样很重要甚至比基金经理重要。所以在比较量化基金时,投资者还要看这家基金公司其他量化产品的收益情况。
不少量化基金经理都是“物理学、数学、统计学、计算机及相关理工专业研究生以上学历“和拥有理工背景的“复合型人才”。“学好数理化,走遍天下都不怕”在美国也生效——华尔街在几十年前就开始吸纳理工科人才了。人们普遍认为,理工背景的人相较于经管类在数学、逻辑思维、数据分析、建模和计算机上更强,而这些正是金融类工作所不可或缺的,也是Fintech浪潮中关注度不断升级的热点。
第三步、比较不同时期的业绩
量化基金一般不择时,量化基金的优势在于能够获取相对稳定的Alpha收益,所以一只好的量化基金应该能获取比较稳定的Alpha收益。投资者更应该寻找业绩表现相对稳定的基金,而不是超额收益绝对领先的基金。
回顾过去几年,如果将量化基金的超额收益进行分解,超额收益分别来源于行业、风格、个股三大领域,其中风格在收益中的贡献占比较大,所占比重甚至超过50%,而风格中市值因子则处于Top3的排位。
量化基金在过去几年“扎堆”于市值因子,享受了市值因子带来的超额收益,导致基金经理在做因子模型时产生了思维惯性,但这一惯性思维在去年的市场环境中遭遇了“滑铁卢”。
这里需要说明的是,量化基金的规模也会对量化基金的业绩产生一定的影响。同样的策略,基金的规模小一点可能更好,因为规模大了,尤其是百亿规模后冲击成本更大,组合切换需要更多时间。所以投资者在选择量化基金时也需考虑该基金规模的大小及变动情况,不宜选择自身规模过大或规模大幅变动的基金。
所以对比不同时期量化基金的业绩,就可以看出这支团队在面对市场风格切换时应对自如程度如何,而不是靠某一个策略就可以吃遍天。
第四步、比较主动风险所带来的超额收益
除了考虑量化基金的长期收益外,还我们还要考虑一只量化基金的风险----一只量化基金在承担主动风险基础上所带来的超额收益有多少。主动风险所带来的超额收益可以用超额收益的波动率。
看策略的有效性
每个量化基金经理的模型都有根据自己对市场的理解建构的,因此判断一只量化基金是否能长期持有,需要考察该基金在过去一段时间内,历经不同风格市场行情中的表现。如果在各类市场中都能表现出色且回撤较小的量化基金说明其背后的量化模型十分完善,有能力“持续战斗”。
有两个指标可以用于观测,如果这个基金是做绝对收益的,可以看它的夏普比率;如果基金是做相对策略的,就看信息比率。前者是指在获得相同收益的情况下,基金冒的单位风险小,后者是指基金主动冒风险获得的单位收益高。
信息比率(Information Ratio)衡量某一投资组合优于一个特定指数的的风险调整超额报酬。信息比率是从主动管理的角度描述风险调整后收益。信息比率越大,说明基金经理单位跟踪误差所获得的超额收益越高,因此,信息比率较大的基金的表现要优于信息比率较低的基金。
信息比率IR=α ∕ ω (α为组合的超额收益,ω为主动风险),将基金报酬率减去同类基金或者是大盘报酬率(剩下的值为超额报酬),再除以该超额报酬的标准差。信息比率越高,该基金表现持续优于大盘的程度越高。
信息比率越大,说明基金经理单位跟踪误差所获得的超额收益越高,因此,信息比率较大的基金的表现要优于信息比率较低的基金。一般而言,信息比率达到2算是及格,信息比率达到3就很优秀了。
来源:今天说量化
推荐阅读: