初识Tensorflow——记我的Tensorflow的安装历程

0. 写点儿闲话

其实开始关注TensorFlow已经两个月了,一直尝试着要在电脑上安装尝试,可数次都是花了很长时间尝试种种最后未能如愿。也正好因为这两个月忙着要改论文交论文和处理回国事宜,所以就暂时就放了下来。正好今天有了时间,心想着再尝试一次,结果没有想到,花费了不到一个小时就完成了安装和第一个程序的验证。从今天起,Tensorflow之旅正式开始!

1. 安装教程

前几次的安装都是按照Tensorflow中文社区安装教程来安装的,几次都是在某些莫名的地方出现问题没法进行下去了。这次是拜真正从零开始,Tensorflow详细安装图文教程所指导,得以顺利安装成功。后者讲解详细,对过程中出现的问题都作出了解释,很顺利得就安装成功了。

2. 安装流程

2.1 安装pip

必不可少的python-pip和python-dev

在这个Terminal窗口中输入命令:

$ sudo apt-get install python-pip python-dev

2.2 安装Tensorflow

命令如下

$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0-cp27-none-linux_x86_64.whl

在这一步遇到了如下问题,按照教程的指示,更新pip可解决,详细内容可阅读《真正从零开始》

9776445-c34dff9b296c00d2.png

更新完成后再次输入安装命令,故障已排除。不过由于是谷歌的服务器,果不其然出现了如下连接故障。

9776445-20e7cb7ce2a32caa.png

尝试多次(10次以上)后终于正常下载并安装成功了。

3. 初次运行

安装好之后就要兴致勃勃地进行第一次运算了,这里我用的是中文社区的代码,代码如下:

import tensorflow as tf

import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.

x_data = np.float32(np.random.rand(2, 100)) # 随机输入

y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型 #

b = tf.Variable(tf.zeros([1]))

W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))

y = tf.matmul(W, x_data) + b

# 最小化方差

loss = tf.reduce_mean(tf.square(y - y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

# 初始化变量

nit = tf.initialize_all_variables()

# 启动图(graph)

sess = tf.Session()

sess.run(init)

# 拟合平面

for step in xrange(0, 201):

  sess.run(train)

    if step % 20 == 0:

      print step, sess.run(W), sess.run(b)

# 得到最佳拟合结果 W: [[0.100 0.200]], b: [0.300]

使用的IDE为Eric。 需注意,以上的代码需要由python2来执行,如使用python3执行的话会报错(如print语句在python2 和Python3中使用不一样)。

9776445-f3ef800bb3180d16.jpg

在Eric Python IDE中设置执行的Python版本的方法如下:

在右侧的Preferences中点选Debugger中的Python选项卡,将.py文件加入关联资源,并在Python3选项卡中取消.py 文件的关联,之后重启运行,故障排除,程序顺利运行并得到理想中的结果:w:[0.1, 0.2] b [0.3]

9776445-782e02c616d42526.png
9776445-15ab5b2640802292.png

结果如下:

9776445-01db08ba9f37767b.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值