缺陷特征描述及特征选择

       传统的表面缺陷检测算法最主要的关键和难点是如何提取出良好的特征描述子并且设计出合适的分类器。特征描述实则为一种图像数据降维方式,将以像素为单位的图像表达为特征描述,是后续缺陷识别的重要环节,其主要思想是使得同类缺陷描述相似,不同类缺陷或者缺陷和背景之间的特征差异较大。常用的特征包括几何特征、灰度特征和纹理特征。 

1)  几何特征 
      缺陷通常具有面积、椭圆度、线性度、矩形度、周长等几何特征,因此可以采用几何特征描述缺陷,几何特征主要分为两种:简单描述子,包括边界的长度、区域的面积、外接矩形长宽比等;形状描述子,包括圆度、不变矩、链码、曲率等[35],一般要求几何特征具有平移不变性、旋转不变性和尺度不变性。

2)  灰度特征 
       灰度特征描述图像像素值的分布情况,包括灰度的均值、方差、熵、峤度等,一般图像的纹理特征与图像灰度特征有关,可由灰度特征组成。

3)  纹理特征

       目前,对于表面缺陷技术的研究主要针对纹理特征,纹理特征反映了图像表面的结构信息以及各个像素与其周围像素的关系,不依赖于图像的颜色,是非常重要的特征,它需要在像素点邻域内计算统计性而不仅仅只依赖于单个像素灰度值,因此它具有局部性,并且纹理特征通常具有旋转不变性,对噪声不敏感,鲁棒性较好。 纹理特征包括灰度统计特征、频谱变换特征、模型特征等。

  灰度统计特征 

       灰度统计特征通过计算像素灰度值的分布得到,最简单的描述是直方图特征,但其仅反映像素值出现的频率,并没有反映像素的空间分布。图像的直方图特征给出了图像的诸多信息,包括像素的最值、均值、方差等,此外,L1及 L2范数、归一化系数、熵等也作为统计特征。直方图特征计算简单,对像素空间分布不敏感,具有旋转和平移不变性,在缺陷检测和识别领域中得到了广泛应用;灰度共生矩阵反映了图像灰度的梯度变化,像素之间的邻域信息,可以表示图像的结构、形状信息,通过此矩阵可以产生 14 种纹理特征,其在特征提取与缺陷检测领域占有重要地位。

频谱变换特征 
      图像为 2 维离散信号,因此通过滤波器的设计分析纹理特征,常用于模式纹理。将图像变换到频域,在频域空间去除周期性信息,并进行滤波,再反变换回原始图像域,通过差分可得到缺陷区域。常用的变换处理包括傅里叶变换、Gabor 变换、离散余弦变换、小波变换等。 

       傅里叶变换将图像变换到频域,使用频谱能量或频谱熵表达纹理,图像的纹理主要表现为图像的周期性、随机性和方向性特征,周期性纹理指图像的功率谱具有规律性,随机性纹理指频谱响应并不仅局限在特定方向,方向性纹理指方向性在频谱中会很好地保持,根据相对于频率中心位置距离的频谱分布情况可确定纹理图像的周期性,方向性或者随机性。通过将图像进行傅里叶变换到频域,在频域内,将实部和虚部与幅值相除去除周期性信号,再反变换回时域进行动态阈值分割,定位手机 LCD 面板的缺陷,但傅里叶变换是全局变换,不具有局部分析能力,不能分析局部细节信息。

       Gabor 变换是为了改进傅里叶变换的缺点提出的,傅里叶变换不能很好地描述图像局部细节纹理特征,通过在傅里叶变换时加窗函数的方法使得变换具有空间局部刻画能力,当窗函数为 gaussian 函数时即为 gabor 变换。Gabor 变换很好地模拟了人的视觉感知特征,具有很好的方向性,尺度不变性。

       小波变换是考虑到 gabor 变换的窗函数是固定的,不具备自适应能力而提出来的。通过平移和伸缩母小波对信号进行多尺度变换,可提取信号的任意细节特征。通常,采用小波变换进行缺陷检测分为两阶段,第一阶段是训练过程,使用参考图像创建自适应小波并得到相应的小波系数,第二阶段是测试过程,使用训练过程得到的自适应小波分解测试图像,分析和比较测试图像的小波系数和参考图像的小波系数即可得到缺陷位置。

模型特征

首先假设图像的正常纹理特征符合某模型,然后估计模型参数,通过参考图像和测试图像模型参数的差异实现缺陷定位。典型的方法包括高斯混合模型(Gaussian  Mixture  Model, GMM)、高斯马尔科夫随机场(Gaussian-Markov Random Field, GMRF)[57]、自回归模型等。

       灰度统计特征计算像素点及其邻域的空间分布,该方法假设图像背景的统计特征是非常稳定的,可以使用不同的统计特征定位缺陷区域,然而不同的统计方法只针对特定的图像,适用性较窄,且这些方法的检测结果严重依赖于选择的滑动窗口大小和判别阈值,容易受到噪声影响;频谱变换特征通过选择合适的正交基将原始图像变换到频域,根据缺陷区域和非缺陷区域频域系数的不同定位缺陷,计算复杂性较高,对复杂纹理背景检测结果不佳,严重依赖于所选择的滤波器和滤波器的参数;模型特征准确率较高,首先假设图像的纹理背景符合某个特定的模型,然后使用无缺陷图像估计模型参数,通过判断检测的图像是否符合此模型来实现缺陷检测,但该类特征不能很好地检测小的缺陷、计算复杂度较高且最初模型假设不一定成立。每类方法都有优缺点,目前研究者们主要将不同类特征结合用于缺陷定位。 

       图像经过特征提取后将高维像素特征转化为低维特征,但低维特征之间仍然具有相关性,同时考虑到对于后续分类来说,输入的特征维数越低,会减少分类器设计时的训练数据需求量,不容易过拟合,可以提高分类速度,并且提取的特征不一定对后续的分类有用,因此,还需要对特征再次提取,去除特征间的冗余信息,在尽可能多地保留特征信息的情况下进一步减少特征维数。特征选择一般可分为两种:根据某规则计算每个特征的重要程度,去掉重要性较小的特征;综合考虑所有特征,降低特征之间的相关性。第一类方法主要包括分支定界法,顺序前进法等,这类方法可以减少计算量,但得到的不一定是全局最优解,第二类方法用得较多的是主成分分析法(Principal  Component  Analysis,  PCA)[60]、独立成分分析(Independent  Component 
Analysis, ICA)、线性判别分析法、自组织特征映射(Self-Organizing Feature Mapping, SOFM),该类方法通过线性组合方法降低特征维数。PCA 是一种非监督的降维方式,它是一种正交投影,使得原图像数据在投影子空间各维度上方差最大,通过线性组合几个方差大的维度,在尽可能多地保留原始信息的情况下降低特征维数,计算简单。PCA 得到的特征向量各分量之间是不相关的,只能说明各分量之间没有线性关系,并不能保证各分量之间相互独立。ICA 最早用于盲源分离,即从一组混合的信号中分离出各独立信号。 

参考文献:

[1]谢芬. 基于机器视觉的表面缺陷检测技术研究[D].南京航空航天大学,2019.

©️2020 CSDN 皮肤主题: 黑客帝国 设计师:上身试试 返回首页