线性代数 | 知识点总结(上)

线性代数知识点总结归纳,参考资料为武汉大学黄正华老师的教学课件

1. 行列式

1.1 内容小结

  • 行列式的三种变换

    • 互换某两行 (列) ; 记作 r i ↔ r j ( c i ↔ c j ) r_i \leftrightarrow r_j\left(c_i \leftrightarrow c_j\right) rirj(cicj).
    • 提出某一行(列)的公因子; 记作 r i ÷ k ( c i ÷ k ) r_i \div k\left(c_i \div k\right) ri÷k(ci÷k).
    • 把某一行(列)的 k k k 倍加到另一行(列); 记作 r i + k r j ( c i + k c j ) r_i+k r_j\left(c_i+k c_j\right) ri+krj(ci+kcj).
      计算行列式最常用的一种方法就是利用变换 r i + k r j r_i+k r_j ri+krj r i ↔ r j r_i \leftrightarrow r_j rirj, 把行列式化为上三角形行列式, 从而 算得行列式的值.
  • 行列式为零的两种情形:

    • 两行(列)相同.
    • 两行(列)成比例.
  • 行列式的某行元素与另一行对应元素的代数余子式乘积之和为0。
    证明:将第 i i i行加到第 j j j行上(行列式值不变),再将行列式按第 j j j行张开,得
    D = ( a j 1 + a i 1 ) A j 1 + ( a j 2 + a i 2 ) A j 2 + … + ( a j n + a i n ) A j n = D + ( a i 1 A j 1 + a i 2 A j 2 + … + a i n A j n ) \begin{aligned} D &= (a_{j1} + a_{i1})A_{j1} + (a_{j2} + a_{i2})A_{j2} + …+ (a_{jn} + a_{in})A_{jn}\\ &= D + (a_{i1}A_{j1} + a_{i2}A_{j2} + … + a_{in}A_{jn}) \end{aligned} D=aj1+ai1Aj1+aj2+ai2Aj2++ajn+ainAjn=D+ai1Aj1+ai2Aj2++ainAjn
    显然上式后面部分为0,得证。

  • D T = D D^T=D DT=D

1.2 常用结论

  1. 对角行列式
    ∣ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ∣ = λ 1 λ 2 ⋯ λ n . \left|\begin{array}{cccc}\lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n\end{array}\right|=\lambda_1 \lambda_2 \cdots \lambda_n . λ1000λ2000λn =λ1λ2λn.
  2. 三角形行列式
    ∣ a 11 0 0 ⋯ 0 a 21 a 22 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 a n 3 ⋯ a n n ∣ = a 11 a 22 ⋯ a n n = ∣ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ 0 0 ⋯ a n n ∣ . \left|\begin{array}{ccccc} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n} \end{array}\right|=a_{11} a_{22} \cdots a_{n n}=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{n n} \end{array}\right| . a11a21an10a22an200an300ann =a11a22ann= a1100a12a220a1na2nann .
  3. 准三角形行列式
    ∣ a 11 ⋯ a 1 k 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ a k 1 ⋯ a k k 0 ⋯ 0 c 11 ⋯ c 1 k b 11 ⋯ b 1 r ⋮ ⋮ ⋮ ⋮ c r 1 ⋯ c r k b r 1 ⋯ b r r ∣ = ∣ a 11 ⋯ a 1 k ⋮ ⋮ a k 1 ⋯ a k k ∣ ∣ b 11 ⋯ b 1 r ⋮ ⋮ b r 1 ⋯ b r r ∣ . \left|\begin{array}{cccccc} a_{11} & \cdots & a_{1 k} & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{k 1} & \cdots & a_{k k} & 0 & \cdots & 0 \\ c_{11} & \cdots & c_{1 k} & b_{11} & \cdots & b_{1 r} \\ \vdots & & \vdots & \vdots & & \vdots \\ c_{r 1} & \cdots & c_{r k} & b_{r 1} & \cdots & b_{r r} \end{array}\right|=\left|\begin{array}{ccc} a_{11} & \cdots & a_{1 k} \\ \vdots & & \vdots \\ a_{k 1} & \cdots & a_{k k} \end{array}\right|\left|\begin{array}{ccc} b_{11} & \cdots & b_{1 r} \\ \vdots & & \vdots \\ b_{r 1} & \cdots & b_{r r} \end{array}\right| . a11ak1c11cr1a1kakkc1kcrk00b11br100b1rbrr = a11ak1a1kakk b11br1b1rbrr .
    对角行列式是三角形行列式的特例, 三角形行列式又是准三角形行列式的特例.
  4. 范德蒙德行列式
    ∣ 1 1 1 ⋯ 1 x 1 x 2 x 3 ⋯ x n x 1 2 x 2 2 x 3 2 ⋯ x n 2 ⋮ ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 x 3 n − 1 ⋯ x n n − 1 ∣ = ∏ n ⩾ i > j ⩾ 1 ( x i − x j ) \left|\begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{array}\right|=\prod_{n \geqslant i>j \geqslant 1}\left(x_i-x_j\right) 1x1x12x1n11x2x22x2n11x3x32x3n11xnxn2xnn1 =ni>j1(xixj)

1.3 典型例题

计算 n n n 阶行列式
D n = ∣ x a ⋯ a a x ⋯ a ⋮ ⋮ ⋮ a a ⋯ x ∣ . D_n=\left|\begin{array}{cccc} x & a & \cdots & a \\ a & x & \cdots & a \\ \vdots & \vdots & & \vdots \\ a & a & \cdots & x \end{array}\right| . Dn= xaaaxaaax .
解:

解法一. 将第一行乘 ( − 1 ) (-1) (1) 分别加到其余各行, 得
D n = ∣ x a a ⋯ a a − x x − a 0 ⋯ 0 a − x 0 x − a ⋯ 0 ⋮ ⋮ ⋮ ⋮ a − x 0 0 ⋯ x − a ∣ , D_n=\left|\begin{array}{ccccc} x & a & a & \cdots & a \\ a-x & x-a & 0 & \cdots & 0 \\ a-x & 0 & x-a & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a-x & 0 & 0 & \cdots & x-a \end{array}\right|, Dn= xaxaxaxaxa00a0xa0a00xa ,
再将各列都加到第一列上, 得
D n = ∣ x + ( n − 1 ) a a a ⋯ a 0 x − a 0 ⋯ 0 0 0 x − a ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ x − a ∣ = ( x + ( n − 1 ) a ) ( x − a ) n − 1 . D_n=\left|\begin{array}{ccccc} x+(n-1) a & a & a & \cdots & a \\ 0 & x-a & 0 & \cdots & 0 \\ 0 & 0 & x-a & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & x-a \end{array}\right|=(x+(n-1) a)(x-a)^{n-1} . Dn= x+(n1)a000axa00a0xa0a00xa =(x+(n1)a)(xa)n1.
解法二. 将各列都加到第一列得
D n = ∣ x + ( n − 1 ) a a ⋯ a x + ( n − 1 ) a x ⋯ a ⋮ ⋮ ⋮ x + ( n − 1 ) a a ⋯ x ∣ = ( x + ( n − 1 ) a ) ∣ 1 a ⋯ a 1 x ⋯ a ⋮ ⋮ ⋮ 1 a ⋯ x ∣ , D_n=\left|\begin{array}{cccc} x+(n-1) a & a & \cdots & a \\ x+(n-1) a & x & \cdots & a \\ \vdots & \vdots & & \vdots \\ x+(n-1) a & a & \cdots & x \end{array}\right|=(x+(n-1) a)\left|\begin{array}{cccc} 1 & a & \cdots & a \\ 1 & x & \cdots & a \\ \vdots & \vdots & & \vdots \\ 1 & a & \cdots & x \end{array}\right|, Dn= x+(n1)ax+(n1)ax+(n1)aaxaaax =(x+(n1)a) 111axaaax ,
再将第一行乘以 ( − 1 ) (-1) (1) 分别加到其余各行, 得
D n = ( x + ( n − 1 ) a ) ∣ 1 a a ⋯ a 0 x − a 0 ⋯ 0 0 0 x − a ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ x − a ∣ = ( x + ( n − 1 ) a ) ( x − a ) n − 1 . D_n=(x+(n-1) a)\left|\begin{array}{ccccc} 1 & a & a & \cdots & a \\ 0 & x-a & 0 & \cdots & 0 \\ 0 & 0 & x-a & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & x-a \end{array}\right|=(x+(n-1) a)(x-a)^{n-1} . Dn=(x+(n1)a) 1000axa00a0xa0a00xa =(x+(n1)a)(xa)n1.

解法三. 升阶法.
D n = ∣ 1 a a ⋯ a 0 x a ⋯ a 0 a x ⋯ a ⋮ ⋮ ⋮ ⋮ 0 a a ⋯ x ∣ ( n + 1 ) × ( n + 1 ) r i − r 1 i = 2 , 3 , ⋯ ∣ 1 a a ⋯ a − 1 x − a 0 ⋯ 0 − 1 0 x − a ⋯ 0 ⋮ ⋮ ⋮ ⋮ − 1 0 0 ⋯ x − a ∣ ( n + 1 ) × ( n + 1 ) D_n=\left|\begin{array}{ccccc} 1 & a & a & \cdots & a \\ 0 & x & a & \cdots & a \\ 0 & a & x & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & a & a & \cdots & x \end{array}\right|_{(n+1) \times(n+1)} \quad \frac{r_i-r_1}{i=2,3, \cdots}\left|\begin{array}{ccccc} 1 & a & a & \cdots & a \\ -1 & x-a & 0 & \cdots & 0 \\ -1 & 0 & x-a & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & 0 & 0 & \cdots & x-a \end{array}\right|_{(n+1) \times(n+1)} Dn= 1000axaaaaxaaaax (n+1)×(n+1)i=2,3,rir1 1111axa00a0xa0a00xa (n+1)×(n+1)
x = a x=a x=a, 则 D n = 0 D_n=0 Dn=0. 若 x ≠ a x \neq a x=a, 则将 1 x − a c j \frac{1}{x-a} c_j xa1cj 加到 c 1 , j = 2 , 3 , ⋯   , n + 1 c_1, j=2,3, \cdots, n+1 c1,j=2,3,,n+1 :
D n = ∣ 1 + a x − a n a a ⋯ a 0 x − a 0 ⋯ 0 0 0 x − a ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ x − a ∣ ( n + 1 ) × ( n + 1 ) = ( 1 + n a x − a ) ( x − a ) n = ( x + ( n − 1 ) a ) ( x − a ) n − 1 . \begin{aligned} D_n &=\left|\begin{array}{ccccc} 1+\frac{a}{x-a} n & a & a & \cdots & a \\ 0 & x-a & 0 & \cdots & 0 \\ 0 & 0 & x-a & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & x-a \end{array}\right|_{(n+1) \times(n+1)} \\ &=\left(1+\frac{n a}{x-a}\right)(x-a)^n=(x+(n-1) a)(x-a)^{n-1} . \end{aligned} Dn= 1+xaan000axa00a0xa0a00xa (n+1)×(n+1)=(1+xana)(xa)n=(x+(n1)a)(xa)n1.
解法四. D n D_n Dn 的第 1 列拆开, 得
D n = ∣ x − a a a ⋯ a 0 x a ⋯ a 0 a x ⋯ a ⋮ ⋮ ⋮ ⋮ 0 a a ⋯ x ∣ + ∣ a a a ⋯ a a x a ⋯ a a a x ⋯ a ⋮ ⋮ ⋮ ⋮ a a a ⋯ x ∣ = ( x − a ) D n − 1 + a ( x − a ) n − 1 . D_n=\left|\begin{array}{ccclc} x-a & a & a & \cdots & a \\ 0 & x & a & \cdots & a \\ 0 & a & x & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & a & a & \cdots & x \end{array}\right|+\left|\begin{array}{ccccc} a & a & a & \cdots & a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ a & a & a & \cdots & x \end{array}\right|=(x-a) D_{n-1}+a(x-a)^{n-1} . Dn= xa000axaaaaxaaaax + aaaaaxaaaaxaaaax =(xa)Dn1+a(xa)n1.
所以
将上述等式累加, 消掉等号两边的相同项, 并注意到 D 2 = x 2 − a 2 D_2=x^2-a^2 D2=x2a2, 则
D n = ( x − a ) n − 2 ( x 2 − a 2 ) + ( n − 2 ) a ( x − a ) n − 1 = ( x + ( n − 1 ) a ) ( x − a ) n − 1 . D_n=(x-a)^{n-2}\left(x^2-a^2\right)+(n-2) a(x-a)^{n-1}=(x+(n-1) a)(x-a)^{n-1} . Dn=(xa)n2(x2a2)+(n2)a(xa)n1=(x+(n1)a)(xa)n1.

1.4 行列式计算的常见方法

1. 基本计算思路

  1. 三角化

    化行列式为三角形是计算行列式的最基本思路. 通过观察行列式的特点, 利用行列式的性质将其作变 形, 再将其化为三角形行列式.

    例: 计算 n n n 阶行列式
    D = ∣ n n − 1 ⋯ 3 2 1 n n − 1 ⋯ 3 3 1 n n − 1 ⋯ 5 2 1 ⋮ ⋮ . ⋮ ⋮ ⋮ n 2 n − 3 ⋯ 3 2 1 2 n − 1 n − 1 ⋯ 3 2 1 ∣ . D=\left|\begin{array}{cccccc} n & n-1 & \cdots & 3 & 2 & 1 \\ n & n-1 & \cdots & 3 & 3 & 1 \\ n & n-1 & \cdots & 5 & 2 & 1 \\ \vdots & \vdots & . & \vdots & \vdots & \vdots \\ n & 2 n-3 & \cdots & 3 & 2 & 1 \\ 2 n-1 & n-1 & \cdots & 3 & 2 & 1 \end{array}\right| . D= nnnn2n1n1n1n12n3n1.335332322211111 .
    解 各行只有副对角线元素不同. 将第 1 行乘以 (-1) 加到第 2 , 3 , … , n 2,3, \ldots, n 2,3,,n 行, 得
    D = ∣ n n − 1 ⋯ 3 2 1 0 0 ⋯ 0 1 0 0 0 ⋯ 2 0 0 ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 0 n − 2 ⋯ 0 0 0 n − 1 0 ⋯ 0 0 0 ∣ = ( − 1 ) n ( n − 1 ) 2 ( n − 1 ) ! D=\left|\begin{array}{cccccc} n & n-1 & \cdots & 3 & 2 & 1 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & 2 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & n-2 & \cdots & 0 & 0 & 0 \\ n-1 & 0 & \cdots & 0 & 0 & 0 \end{array}\right|=(-1)^{\frac{n(n-1)}{2}}(n-1) ! D= n000n1n100n20302002100010000 =(1)2n(n1)(n1)!

  2. 降阶法

    按一行(列)展开或按 Laplace 定理展开, 将 𝑛 阶行列式降为较低阶又容易计算的行列式, 此方法统称为降阶法

    例: 计算 n n n 阶行列式
    D n = ∣ a b 0 ⋯ 0 0 0 a b ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ a b b 0 0 ⋯ 0 a ∣ . D_n=\left|\begin{array}{cccccc} a & b & 0 & \cdots & 0 & 0 \\ 0 & a & b & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ b & 0 & 0 & \cdots & 0 & a \end{array}\right| . Dn= a00bba000b0000a000ba .
    解 按第一列展开,
    D n = a n + ( − 1 ) n + 1 b n . D_n=a^n+(-1)^{n+1} b^n . Dn=an+(1)n+1bn.

  3. 递推法

    一般地, 递推方法是通过降阶等途径, 建立 n n n 阶行列式 D n D_n Dn 和较它阶低的结构相同的行列式之间的关 系, 并求得 D n D_n Dn

    例: 计算如下的 n n n 阶三对角行列式
    D n = ∣ a + b a b 1 a + b a b ⋱ ⋱ ⋱ 1 a + b a b 1 a + b ∣ . D_n=\left|\begin{array}{ccccc} a+b & a b & & & \\ 1 & a+b & a b & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & a+b & a b \\ & & & 1 & a+b \end{array}\right| . Dn= a+b1aba+bab1a+b1aba+b .
    解 按第 1 列展开, 得
    D n = ( a + b ) D n − 1 − ∣ a b 0 0 1 a + b a b 1 a + b a b ⋱ ⋱ ⋱ 1 a + b a b 1 a + b ∣ = ( a + b ) D n − 1 − a b D n − 2 . \begin{aligned} D_n=&(a+b) D_{n-1}-\left|\begin{array}{cccccc} a b & 0 & 0 & & & \\ 1 & a+b & a b & & & \\ & 1 & a+b & a b & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & a+b & a b \\ & & & & 1 & a+b \end{array}\right| \\ =&(a+b) D_{n-1}-a b D_{n-2} . \end{aligned} Dn==(a+b)Dn1 ab10a+b10aba+bab1a+b1aba+b (a+b)Dn1abDn2.
    由 上式得到
    D n − b D n − 1 = a ( D n − 1 − b D n − 2 ) = a 2 ( D n − 2 − b D n − 3 ) = ⋯ = a n − 2 ( D 2 − b D 1 ) . D_n-b D_{n-1}=a\left(D_{n-1}-b D_{n-2}\right)=a^2\left(D_{n-2}-b D_{n-3}\right)=\cdots=a^{n-2}\left(D_2-b D_1\right) . DnbDn1=a(Dn1bDn2)=a2(Dn2bDn3)==an2(D2bD1).
    D 1 = a + b , D 2 = a 2 + b 2 + a b D_1=a+b, D_2=a^2+b^2+a b D1=a+b,D2=a2+b2+ab, 得
    D n − b D n − 1 = a n . (1) \tag{1} D_n-b D_{n-1}=a^n . DnbDn1=an.(1)
    同理(或由 a , b a, b a,b 的对称性)得
    D n − a D n − 1 = b n . (2) \tag{2} D_n-a D_{n-1}=b^n . DnaDn1=bn.(2)
    a ≠ b a \neq b a=b, 联立 (1) 和 (2) 消去 D n − 1 D_{n-1} Dn1, 得
    D n = a n + 1 − b n + 1 a − b . D_n=\frac{a^{n+1}-b^{n+1}}{a-b} . Dn=aban+1bn+1.
    a = b a=b a=b, 则 D n = a D n − 1 + a n D_n=a D_{n-1}+a^n Dn=aDn1+an. 依此递推, 得 D n = ( n + 1 ) a n D_n=(n+1) a^n Dn=(n+1)an.
    注: 与递推过程相反的方法是归纳. 如要计算 n n n 阶行列式
    D n = ∣ 3 2 1 3 2 ⋱ ⋱ ⋱ 1 3 2 1 3 ∣ , D_n=\left|\begin{array}{ccccc} 3 & 2 & & & \\ 1 & 3 & 2 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 3 & 2 \\ & & & 1 & 3 \end{array}\right|, Dn= 3123213123 ,
    因为 D 1 = 3 = 2 2 − 1 , D 2 = 7 = 2 3 − 1 , D 3 = 15 = 2 4 − 1 D_1=3=2^2-1, D_2=7=2^3-1, D_3=15=2^4-1 D1=3=221,D2=7=231,D3=15=241. 因此, 猜想
    D n = 2 n + 1 − 1 , D_n=2^{n+1}-1, Dn=2n+11,
    并利用数学归纳法易证此结论成立.

2. 常用化简手法

要计算一个 n n n 阶行列式, 往往要利用行列式性质将它化简. 为此, 有以下常用手法:

  • 行累加, 即把行列式的某 n − 1 n-1 n1 个行, 加到余下的一行. 当行列式的各行的和相同时常使用此技巧.
  • 主行消法, 即某行的适当倍数, 加到其余的各行.
  • 逐行消法, 即第 i i i 行乘以 k k k 加到第 i + 1 i+1 i+1 行, i = n − 1 , n − 2 , ⋯   , 1 i=n-1, n-2, \cdots, 1 i=n1,n2,,1; 或第 i + 1 i+1 i+1 行乘以 k k k 加到第 i i i 行, i = 1 , 2 , ⋯   , n − 1 i=1,2, \cdots, n-1 i=1,2,,n1.
  • 逐行相邻互换.

3. 辅助算法

  1. 升阶

    n n n 阶行列式添上一行、一列, 变为 n + 1 n+1 n+1 阶行列式再化简计算. 也称加边法.当然加边不是随便加一行一列就可以了. 关键是观察每行或每列是否有相同的因子.

    例: 计算 n n n 阶行列式:
    D n = ∣ x 1 2 + 1 x 1 x 2 ⋯ x 1 x n x 2 x 1 x 2 2 + 1 ⋯ x 2 x n ⋮ ⋮ ⋮ x n x 1 x n x 2 ⋯ x n 2 + 1 ∣ . D_n=\left|\begin{array}{cccc} x_1^2+1 & x_1 x_2 & \cdots & x_1 x_n \\ x_2 x_1 & x_2^2+1 & \cdots & x_2 x_n \\ \vdots & \vdots & & \vdots \\ x_n x_1 & x_n x_2 & \cdots & x_n^2+1 \end{array}\right| . Dn= x12+1x2x1xnx1x1x2x22+1xnx2x1xnx2xnxn2+1 .
    分析: 暂时不看主对角线上的 1 , 则第 i i i 行是 x i x_i xi x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn 相乘. 该行列式每行有相同的因子 x 1 , x 2 x_1, x_2 x1,x2, … , x n \ldots, x_n ,xn, 从而考虑加边法.

    注意 升阶法最大的特点就是要找出每行或每列相同的因子, 把 1 及这些相同的因子作为新行列式的 第一行, 那么升阶之后, 就可利用行列式的性质把绝大部分元素化为零, 从而简化计算.

  2. 裂开

    将一个行列式裂开成 2 个(或 2 个以上)行列式来化简计算.

    例: 试证
    ∣ b + c c + a a + b q + r r + p p + q y + z z + x x + y ∣ = 2 ∣ a b c p q r x y z ∣ \left|\begin{array}{lll} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{array}\right|=2\left|\begin{array}{lll} a & b & c \\ p & q & r \\ x & y & z \end{array}\right| b+cq+ry+zc+ar+pz+xa+bp+qx+y =2 apxbqycrz
    解: 记左端行列式为 D D D, 利用行列式的性质, 将 D D D 的第 1 列拆开得到两个行列式
    D = ∣ b c + a a + b q r + p p + q y z + x x + y ∣ + ∣ c c + a a + b r r + p p + q z z + x x + y ∣ D=\left|\begin{array}{ccc} b & c+a & a+b \\ q & r+p & p+q \\ y & z+x & x+y \end{array}\right|+\left|\begin{array}{ccc} c & c+a & a+b \\ r & r+p & p+q \\ z & z+x & x+y \end{array}\right| D= bqyc+ar+pz+xa+bp+qx+y + crzc+ar+pz+xa+bp+qx+y
    将第一个行列式中将第 3 列减去第 1 列, 在第 2 个行列式中将第 2 列减去第 1 列:
    D = ∣ b c + a a q r + p p y z + x x ∣ + ∣ c a a + b r p p + q z x x + y ∣ = ∣ b c a q r p y z x ∣ + ∣ c a b r p q z x y ∣ = 2 ∣ a b c p q r x y z ∣ \begin{aligned} D &=\left|\begin{array}{lll} b & c+a & a \\ q & r+p & p \\ y & z+x & x \end{array}\right|+\left|\begin{array}{ccc} c & a & a+b \\ r & p & p+q \\ z & x & x+y \end{array}\right| \\ &=\left|\begin{array}{lll} b & c & a \\ q & r & p \\ y & z & x \end{array}\right|+\left|\begin{array}{ccc} c & a & b \\ r & p & q \\ z & x & y \end{array}\right|=2\left|\begin{array}{ccc} a & b & c \\ p & q & r \\ x & y & z \end{array}\right| \end{aligned} D= bqyc+ar+pz+xapx + crzapxa+bp+qx+y = bqycrzapx + crzapxbqy =2 apxbqycrz
    得证.

2. 矩阵及其运算

矩阵是一个数表, 而行列式本质上是一个数. 这是两者的巨大区别.

2.1 内容小结

1. 矩阵的运算.

  • 不满足交换律, 即 A B = B A A B=B A AB=BA 一般不成立. (特别地, 若 A B = B A A B=B A AB=BA, 则称矩阵 A A A B B B 是可交换 的.) 相应地要注意以下几点:

    • 矩阵乘法特别地有 “左乘” 和 “右乘” 的说法, 即 B A \boldsymbol{B} \boldsymbol{A} BA A B \boldsymbol{A B} AB 是完 全不同的.
    • 在提取公因子的时候, 要分清楚是从左侧还是右侧提出. 比如 A B − B \boldsymbol{A B - B} ABB 可以写为 ( A − E ) B (\boldsymbol{A}-\boldsymbol{E}) \boldsymbol{B} (AE)B, 即 B \boldsymbol{B} B 只能从右侧提出, 不能写成 B ( A − E ) \boldsymbol{B(A-E)} B(AE). 而 A B − B C \boldsymbol{A B-B C} ABBC, 写成 ( A − C ) B \boldsymbol{(A-C) B} (AC)B B ( A − C ) \boldsymbol{B(A-C)} B(AC), 都是错误的.
    • 由于不满足交换律, 下列公式一般不成立:
      • ( A B ) k = A k B k (\boldsymbol{A B})^k=\boldsymbol{A}^k \boldsymbol{B}^k (AB)k=AkBk;
      • ( A + B ) ( A − B ) = A 2 − B 2 (\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}-\boldsymbol{B})=\boldsymbol{A}^2-\boldsymbol{B}^2 (A+B)(AB)=A2B2
      • 牛顿二项式展开式一般不成立, 比如最简单的公式 ( A + B ) 2 = A 2 + 2 A B + B 2 (\boldsymbol{A}+\boldsymbol{B})^2=\boldsymbol{A}^2+2 \boldsymbol{A B}+\boldsymbol{B}^2 (A+B)2=A2+2AB+B2 就不成立. 而 A \boldsymbol{A} A λ E \lambda \boldsymbol{E} λE 当然是可交换的, 所以牛顿二项式展开式只在下面的情形成立:
        ( A + λ E ) n = A n + C n 1 λ A n − 1 + C n 2 λ 2 A n − 2 + ⋯ C n n − 1 λ n − 1 A + λ n E . (\boldsymbol{A}+\lambda \boldsymbol{E})^n=\boldsymbol{A}^n+C_n^1 \lambda \boldsymbol{A}^{n-1}+C_n^2 \lambda^2 \boldsymbol{A}^{n-2}+\cdots C_n^{n-1} \lambda^{n-1} \boldsymbol{A}+\lambda^n \boldsymbol{E} . (A+λE)n=An+Cn1λAn1+Cn2λ2An2+Cnn1λn1A+λnE.
  • 不满足消去律:

    • A B = O A B=O AB=O 时, 不能推出 A = O A=O A=O B = O B=O B=O.
    • A B = A C A B=A C AB=AC, 且 A ≠ O A \neq O A=O 时, 不能得到 B = C B=C B=C.
      注意, A A A 可逆时, 消去律是成立的, 即
      • A B = O A B=O AB=O 时, 且 ∣ A ∣ ≠ 0 |A| \neq 0 A=0 时, 有 B = O B=O B=O;
      • A B = A C A B=A C AB=AC, 且 ∣ A ∣ ≠ 0 |A| \neq 0 A=0 时, 有 B = C B=C B=C.

    问: 由 A 2 = O A^2=O A2=O, 能否得到 A = O A=O A=O ? 由 A 2 = E A^2=E A2=E, 能否得到 A = ± E ? A=\pm E ? A=±E?
    a A 2 + b A + c E = O a \boldsymbol{A}^2+b \boldsymbol{A}+c \boldsymbol{E}=\boldsymbol{O} aA2+bA+cE=O b 2 − 4 a c ⩾ 0 b^2-4 a c \geqslant 0 b24ac0, 能否得到 A = − b ± b 2 − 4 a c 2 a E ? \boldsymbol{A}=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \boldsymbol{E} ? A=2ab±b24ac E?

    上述都是不成立的, 根源仍然是因为矩阵乘法不满足消去律.
    矩阵乘法不满足交换律, 不满足消去律, 还有一些过去熟知的公式在矩阵理论里并不成立.

2. 伴随矩阵

设矩阵 A = ( a i j ) n × n A=\left(a_{i j}\right)_{n \times n} A=(aij)n×n, 将矩阵 A A A 的元素 a i j a_{i j} aij 所在的第行第j列元素划去后, 剩余的各元素按原来的排列顺序组成的 n − 1 \mathrm{n}-1 n1 阶 矩阵所确定的行列式称为元素 a i j a_{i j} aij 的余子式, 记为 M i j M_{i j} Mij, 称 A i j = ( − 1 ) i + j M i j A_{i j}=(-1)^{i+j} M_{i j} Aij=(1)i+jMij 为元素 a i j a_{i j} aij 的代数余子式。

方阵 A = ( a i j ) n × n A=\left(a_{i j}\right)_{n \times n} A=(aij)n×n 的各元素的代数余子式 A i j A_{i j} Aij 所构成的如下矩阵 A ∗ A^* A :
A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n \begin{array}{cccc} A_{11} & A_{21} & \cdots & A_{n 1} \\ A_{12} & A_{22} & \cdots & A_{n 2} \\ \vdots & \vdots & & \vdots \\ A_{1 n} & A_{2 n} & \cdots & A_{n n} \end{array} A11A12A1nA21A22A2nAn1An2Ann
该矩阵 A ∗ A^* A 称为矩阵 A A A 的伴随矩阵

  1. A A ∗ = A ∗ A = ∣ A ∣ E A A^*=A^* A=|A| E AA=AA=AE.
  2. ∣ A ∣ ≠ 0 |A| \neq 0 A=0, 则 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|} A^* A1=A1A.

3. 逆矩阵

  1. A , B A, B A,B 为方阵, 若 A B = E A B=E AB=E, 则 A , B A, B A,B 可 逆, 且互为逆矩阵. 更一般地, 对方阵而言, 若 A 1 A 2 ⋯ A k = λ E \boldsymbol{A}_1 \boldsymbol{A}_2 \cdots \boldsymbol{A}_k=\lambda \boldsymbol{E} A1A2Ak=λE λ ≠ 0 \lambda \neq 0 λ=0, 则矩阵 A 1 , A 2 , ⋯   , A k \boldsymbol{A}_1, \boldsymbol{A}_2, \cdots, \boldsymbol{A}_k A1,A2,,Ak 都是 可逆的.
  2. 逆矩阵在运算中实现了除法的功能. 在矩阵中没有除法, 或者说, 我们通过引入逆矩阵, 避免了对除 法的讨论.
    对于任意的 n n n 阶方阵 A \boldsymbol{A} A 都有 A E = E A = A \boldsymbol{A} \boldsymbol{E}=\boldsymbol{E} \boldsymbol{A}=\boldsymbol{A} AE=EA=A. 从乘法的角度来看, n n n 阶单位矩阵 E \boldsymbol{E} E 在矩阵中的地位 类似于 1 在复数中的地位. 一个复数 a ≠ 0 a \neq 0 a=0 的倒数可以用等式 a a − 1 = 1 a a^{-1}=1 aa1=1 来刻划, 相仿地, 我们引入记号 A − 1 A^{-1} A1 表示 A A A 的逆矩阵, 并且满足 A A − 1 = E A A^{-1}=E AA1=E. 记号 A − 1 A^{-1} A1 是特定的, 它不能写成 1 A \frac{1}{A} A1.
  3. 矩阵可逆的几个等价说法: 设 A \boldsymbol{A} A n n n 阶方阵,
    • 矩阵 A \boldsymbol{A} A 可逆 ⟺ ∣ A ∣ ≠ 0 ⟺ A \Longleftrightarrow|\boldsymbol{A}| \neq 0 \Longleftrightarrow \boldsymbol{A} A=0A 为非奇异矩阵.

4. 常见重要结论

  • ∣ λ A ∣ = λ n ∣ A ∣ |\lambda \boldsymbol{A}|=\lambda^n|\boldsymbol{A}| λA=λnA. 其中 n n n 是方阵 A \boldsymbol{A} A 的阶数.
  • ( A B ) − 1 = B − 1 A − 1 (\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1} (AB)1=B1A1.
  • ( A B ) T = B T A T (\boldsymbol{A B})^{\mathrm{T}}=\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} (AB)T=BTAT.
  • ( a b c d ) − 1 = 1 a d − b c ( d − b − c a ) , ( a d − b c ≠ 0 ) \left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right),(a d-b c \neq 0) (acbd)1=adbc1(dcba),(adbc=0).
  • ∣ A 1 A 2 ⋱ A k ∣ = ∣ A 1 ∣ ∣ A 2 ∣ ⋯ ∣ A k ∣ \left|\begin{array}{cccc}\boldsymbol{A}_1 & & & \\ & \boldsymbol{A}_2 & & \\ & & \ddots & \\ & & & \boldsymbol{A}_k\end{array}\right|=\left|\boldsymbol{A}_1\right|\left|\boldsymbol{A}_2\right| \cdots\left|\boldsymbol{A}_k\right| A1A2Ak =A1A2Ak
  • ( O A B O ) − 1 = ( O B − 1 A − 1 O ) . \left(\begin{array}{ll}\boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O}\end{array}\right)^{-1}=\left(\begin{array}{cc}\boldsymbol{O} & \boldsymbol{B}^{-1} \\ A^{-1} & \boldsymbol{O}\end{array}\right) . (OBAO)1=(OA1B1O).
  • ∣ O A m × m B n × n O ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \left|\begin{array}{cc}\boldsymbol{O} & \boldsymbol{A}_{m \times m} \\ \boldsymbol{B}_{n \times n} & \boldsymbol{O}\end{array}\right|=(-1)^{m n}|\boldsymbol{A}||\boldsymbol{B}| OBn×nAm×mO =(1)mnA∣∣B. ( 将 A \boldsymbol{A} A 所在行的最后一行开始, 与 B \boldsymbol{B} B 所在的 n n n 行进行相邻互换, 共进行 m × n m \times n m×n 次互换后, 得到 ∣ B n × n O O A m × m ∣ \left|\begin{array}{cc}\boldsymbol{B}_{n \times n} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}_{m \times m}\end{array}\right| Bn×nOOAm×m .)

2.2 题型举例

1. 矩阵运算

例: 已知 α = ( 1 , 2 , 3 ) , β = ( 1 , 1 2 , 1 3 ) \boldsymbol{\alpha}=(1,2,3), \boldsymbol{\beta}=\left(1, \frac{1}{2}, \frac{1}{3}\right) α=(1,2,3),β=(1,21,31), 设 A = α T β \boldsymbol{A}=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} A=αTβ, 求 A n \boldsymbol{A}^n An.


A n = ( α T β ) n = α T ( β α T ) n − 1 β = 3 n − 1 α T β = 3 n − 1 ( 1 1 2 1 3 2 1 2 3 3 3 2 1 ) \boldsymbol{A}^n=\left(\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta}\right)^n=\boldsymbol{\alpha}^{\mathrm{T}}\left(\boldsymbol{\beta} \boldsymbol{\alpha}^{\mathrm{T}}\right)^{n-1} \boldsymbol{\beta}=3^{n-1} \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta}=3^{n-1}\left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{array}\right) An=(αTβ)n=αT(βαT)n1β=3n1αTβ=3n1 1232112331321

例: 设 A = ( 1 0 1 0 2 0 1 0 1 ) \boldsymbol{A}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right) A= 101020101 , 而 n n n 为正整数, 求 A n − 2 A n − 1 . ( n ⩾ 2 ) \boldsymbol{A}^n-2 \boldsymbol{A}^{n-1} .(n \geqslant 2) An2An1.(n2)

解 由 A 2 = ( 2 0 2 0 4 0 2 0 2 ) = 2 A \boldsymbol{A}^2=\left(\begin{array}{lll}2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2\end{array}\right)=2 \boldsymbol{A} A2= 202040202 =2A, 得
A n − 2 A n − 1 = A n − 2 ( A 2 − 2 A ) = O . A^n-2 A^{n-1}=A^{n-2}\left(A^2-2 A\right)=O . An2An1=An2(A22A)=O.

例: 设 A = ( 0 − 1 0 1 0 0 0 0 − 1 ) , B = P − 1 A P \boldsymbol{A}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right), \boldsymbol{B}=\boldsymbol{P}^{-1} \boldsymbol{A P} A= 010100001 ,B=P1AP, 其中 P \boldsymbol{P} P 为三阶可逆矩阵, 求 B 2008 − 2 A 2 \boldsymbol{B}^{2008}-2 \boldsymbol{A}^2 B20082A2.

解 由 A 2 = ( − 1 − 1 1 ) \boldsymbol{A}^2=\left(\begin{array}{ccc}-1 & & \\ & -1 & \\ & & 1\end{array}\right) A2= 111 , 且 A 4 = E \boldsymbol{A}^4=\boldsymbol{E} A4=E, 得
B 2008 − 2 A 2 = P − 1 A 2008 P − 2 A 2 = P − 1 P − 2 A 2 = ( 3 3 − 1 ) \boldsymbol{B}^{2008}-2 \boldsymbol{A}^2=\boldsymbol{P}^{-1} \boldsymbol{A}^{2008} \boldsymbol{P}-2 \boldsymbol{A}^2=\boldsymbol{P}^{-1} \boldsymbol{P}-2 \boldsymbol{A}^2=\left(\begin{array}{ccc} 3 & & \\ & 3 & \\ & & -1 \end{array}\right) B20082A2=P1A2008P2A2=P1P2A2= 331

2. 伴随矩阵

例: 设矩阵 A \boldsymbol{A} A 的伴随矩阵 A ∗ = ( 1 0 0 0 0 1 0 0 1 0 1 0 0 − 3 0 8 ) \boldsymbol{A}^*=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8\end{array}\right) A= 1010010300100008 , 且 A B A − 1 = B A − 1 + 3 E \boldsymbol{A B} \boldsymbol{A}^{-1}=\boldsymbol{B} \boldsymbol{A}^{-1}+3 \boldsymbol{E} ABA1=BA1+3E, 求矩阵 B \boldsymbol{B} B.

解: 在 A B A − 1 = B A − 1 + 3 E \boldsymbol{A B } \boldsymbol{A}^{-1}=\boldsymbol{B} \boldsymbol{A}^{-1}+3 \boldsymbol{E} ABA1=BA1+3E 两边同时右乘 A \boldsymbol{A} A, 得
A B = B + 3 A \boldsymbol{A B}=\boldsymbol{B}+3 \boldsymbol{A} AB=B+3A
再两边左乘 A ∗ A^* A, 得
∣ A ∣ B = A ∗ B + 3 ∣ A ∣ E , 即  ( ∣ A ∣ E − A ∗ ) B = 3 ∣ A ∣ E . |\boldsymbol{A}| \boldsymbol{B}=\boldsymbol{A}^* \boldsymbol{B}+3|\boldsymbol{A}| \boldsymbol{E} \text {, 即 }\left(|\boldsymbol{A}| \boldsymbol{E}-\boldsymbol{A}^*\right) \boldsymbol{B}=3|\boldsymbol{A}| \boldsymbol{E} . AB=AB+3∣AE (AEA)B=3∣AE.
注意到 ∣ A ∗ ∣ = ∣ A ∣ n − 1 \left|\boldsymbol{A}^*\right|=|\boldsymbol{A}|^{n-1} A=An1, 由题设得 ∣ A ∣ = 2 |\boldsymbol{A}|=2 A=2. 所以 ( 2 E − A ∗ ) B = 6 E \left(2 \boldsymbol{E}-\boldsymbol{A}^*\right) \boldsymbol{B}=6 \boldsymbol{E} (2EA)B=6E, 得
B = 6 ( 2 E − A ∗ ) − 1 = ( 6 0 0 0 0 6 0 0 6 0 6 0 0 3 0 − 1 ) \boldsymbol{B}=6\left(2 \boldsymbol{E}-\boldsymbol{A}^*\right)^{-1}=\left(\begin{array}{cccc} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 6 & 0 & 6 & 0 \\ 0 & 3 & 0 & -1 \end{array}\right) B=6(2EA)1= 6060060300600001

3. 逆矩阵

例: 已知 n n n 阶矩阵 A , B \boldsymbol{A}, \boldsymbol{B} A,B 满足 B = ( E + A ) − 1 ( E − A ) \boldsymbol{B}=(\boldsymbol{E}+\boldsymbol{A})^{-1}(\boldsymbol{E}-\boldsymbol{A}) B=(E+A)1(EA), 证明: E + B \boldsymbol{E}+\boldsymbol{B} E+B 可逆, 并求其逆. 若 A = \boldsymbol{A}= A= ( 1 0 0 0 − 2 3 0 0 0 − 4 5 0 0 0 − 6 7 ) \left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -4 & 5 & 0 \\ 0 & 0 & -6 & 7\end{array}\right) 1200034000560007 , 求 ( E + B ) − 1 (\boldsymbol{E}+\boldsymbol{B})^{-1} (E+B)1.

解:

(方法一) 由 B = ( E + A ) − 1 ( E − A ) B=(E+A)^{-1}(E-A) B=(E+A)1(EA), 两边左乘 E + A E+\boldsymbol{A} E+A
B + A B = E − A , ⇒ ( E + A ) B + E + A = 2 E , ⇒ ( E + A ) ( E + B ) = 2 E . \begin{aligned} & \boldsymbol{B}+\boldsymbol{A B}=\boldsymbol{E}-\boldsymbol{A}, \\ \Rightarrow &(\boldsymbol{E}+\boldsymbol{A}) \boldsymbol{B}+\boldsymbol{E}+\boldsymbol{A}=2 \boldsymbol{E}, \\ \Rightarrow &(\boldsymbol{E}+\boldsymbol{A})(\boldsymbol{E}+\boldsymbol{B})=2 \boldsymbol{E} . \end{aligned} B+AB=EA,(E+A)B+E+A=2E,(E+A)(E+B)=2E.
E + B \boldsymbol{E}+\boldsymbol{B} E+B 可逆, 且 ( E + B ) − 1 = 1 2 ( E + A ) (\boldsymbol{E}+\boldsymbol{B})^{-1}=\frac{1}{2}(\boldsymbol{E}+\boldsymbol{A}) (E+B)1=21(E+A).

(方法二) 由 B = ( E + A ) − 1 ( E − A ) B=(E+A)^{-1}(\boldsymbol{E}-\boldsymbol{A}) B=(E+A)1(EA), 得
B = ( E + A ) − 1 ( 2 E − ( E + A ) ) , ⇒ B = 2 ( E + A ) − 1 − E , ⇒ B + E = 2 ( E + A ) − 1 . \begin{aligned} & \boldsymbol{B}=(\boldsymbol{E}+\boldsymbol{A})^{-1}(2 \boldsymbol{E}-(\boldsymbol{E}+\boldsymbol{A})), \\ \Rightarrow \quad & \boldsymbol{B}=2(\boldsymbol{E}+\boldsymbol{A})^{-1}-\boldsymbol{E}, \\ \Rightarrow \quad & \boldsymbol{B}+\boldsymbol{E}=2(\boldsymbol{E}+\boldsymbol{A})^{-1} . \end{aligned} B=(E+A)1(2E(E+A)),B=2(E+A)1E,B+E=2(E+A)1.
E + B \boldsymbol{E}+\boldsymbol{B} E+B 可逆, 且 ( E + B ) − 1 = 1 2 ( E + A ) = ( 1 0 0 0 − 1 2 0 0 0 − 2 3 0 0 0 − 3 4 ) (\boldsymbol{E}+\boldsymbol{B})^{-1}=\frac{1}{2}(\boldsymbol{E}+\boldsymbol{A})=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & -2 & 3 & 0 \\ 0 & 0 & -3 & 4\end{array}\right) (E+B)1=21(E+A)= 1100022000330004 .

.

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CHH3213

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值