【数据分析】卡方检验

本文介绍了卡方检验在比较两组数据差异中的应用,如手机品牌偏好和饮食习惯,强调了卡方值的大小与样本量和自由度的关系,以及交叉卡方和Pearson卡方的区别。特别指出,即使小样本量下的大差异也可能有显著性,但加权数据不适用于交叉卡方。
摘要由CSDN通过智能技术生成

一般使用卡方检验进行分析的目的是比较差异性。例如研究人员想知道两组学生对于手机品牌的偏好差异情况。

卡方值表示观察值与理论值之间的偏离程度。

卡方值的大小与样本量(自由度)有关。一般来说,卡方值越大越好,但并不准确。比如5000和5010的差异为10;40和50的差异为10,明显后者差异更大。

(1) 交叉卡方

使用频率高,仅使用Pearson卡方,不支持加权数据。

 可以看到卡方值为16.667,p =0.000<0.01,所以不同地区的饮食习惯情况呈现出显著性差异

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不菜不菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值