步骤 1: 安装 DeepSpeed
pip install deepspeed
步骤 2: 定义 Transformer 模型
import torch
from torch import nn
class SimpleTransformer(nn.Module):
def __init__(self, d_model=512, nhead=8, num_layers=4, dim_feedforward=2048):
super(SimpleTransformer, self).__init__()
self.transformer = nn.Transformer(
d_model=d_model,
nhead=nhead,
num_encoder_layers=num_layers,
num_decoder_layers=num_layers,
dim_feedforward=dim_feedforward
)
def forward(self, src, tgt):
return self.transformer(src, tgt)
步骤 3: 准备数据
# 随机生成一些输入数据和目标数据
src = torch.rand((10, 32, 512)) # (序列长度, 批大小, 特征数)
tgt = torch.rand((20, 32, 512))
步骤 4: 使用 DeepSpeed 进行训练
首先,创建一个 DeepSpeed 配置文件(例如 ds_config.json
):
{
"train_batch_size": 32,
"gradient_accumulation_steps": 1,
"optimizer": {
"type": "Adam",
"params": {
"lr": 0.001
}
},
"fp16": {
"enabled": true
}
}
然后,编写 DeepSpeed 训练脚本:
import deepspeed
# 初始化模型
model = SimpleTransformer()
# 初始化 DeepSpeed
model_engine, optimizer, _, _ = deepspeed.initialize(
args=ds_args, # DeepSpeed 配置参数
model=model,
model_parameters=model.parameters()
)
# 训练循环
for epoch in range(num_epochs):
for batch in dataloader:
src, tgt = batch
# 前向传播
output = model_engine(src, tgt)
# 计算损失(假设有一个损失函数)
loss = loss_function(output, tgt)
# 后向传播
model_engine.backward(loss)
model_engine.step()
deepspeed解读