DeepSpeed库用于训练一个transform模型

步骤 1: 安装 DeepSpeed

pip install deepspeed

步骤 2: 定义 Transformer 模型

import torch
from torch import nn

class SimpleTransformer(nn.Module):
    def __init__(self, d_model=512, nhead=8, num_layers=4, dim_feedforward=2048):
        super(SimpleTransformer, self).__init__()
        self.transformer = nn.Transformer(
            d_model=d_model, 
            nhead=nhead, 
            num_encoder_layers=num_layers,
            num_decoder_layers=num_layers,
            dim_feedforward=dim_feedforward
        )

    def forward(self, src, tgt):
        return self.transformer(src, tgt)

步骤 3: 准备数据

# 随机生成一些输入数据和目标数据
src = torch.rand((10, 32, 512))  # (序列长度, 批大小, 特征数)
tgt = torch.rand((20, 32, 512))

步骤 4: 使用 DeepSpeed 进行训练

首先,创建一个 DeepSpeed 配置文件(例如 ds_config.json):

{
  "train_batch_size": 32,
  "gradient_accumulation_steps": 1,
  "optimizer": {
    "type": "Adam",
    "params": {
      "lr": 0.001
    }
  },
  "fp16": {
    "enabled": true
  }
}

然后,编写 DeepSpeed 训练脚本:

import deepspeed

# 初始化模型
model = SimpleTransformer()

# 初始化 DeepSpeed
model_engine, optimizer, _, _ = deepspeed.initialize(
    args=ds_args,  # DeepSpeed 配置参数
    model=model,
    model_parameters=model.parameters()
)

# 训练循环
for epoch in range(num_epochs):
    for batch in dataloader:
        src, tgt = batch

        # 前向传播
        output = model_engine(src, tgt)

        # 计算损失(假设有一个损失函数)
        loss = loss_function(output, tgt)

        # 后向传播
        model_engine.backward(loss)
        model_engine.step()

deepspeed解读

好的,下面是一个简单的 PyTorch 训练图像分类模型的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义数据预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载训练集和测试集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False, num_workers=2) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(5): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # 保存模型 PATH = './mnist_net.pth' torch.save(net.state_dict(), PATH) ``` 以上代码实现了一个简单的卷积神经网络(CNN)模型对 MNIST 数据集进行分类。其中,我们使用了 PyTorch 中的 `torchvision` 模块来加载 MNIST 数据集,并对图像进行了标准化预处理。模型训练过程中,我们使用了随机梯度下降(SGD)优化器,并在每个 epoch 完成后输出当前的损失值。最后,我们保存了训练好的模型参数到本地文件中,以供后续使用。 你可以根据自己的需求修改模型结构和超参数来训练不同的模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值