原文地址
https://openaccess.thecvf.com/content_CVPR_2020/papers/Bergmann_Uninformed_Students_Student-Teacher_Anomaly_Detection_With_Discriminative_Latent_Embeddings_CVPR_2020_paper.pdf
论文阅读方法
初识

本文提出了一个名为“Student-Teacher Anomaly Detection”的新框架,利用discriminative Embedding:首先Teacher网络(T)在大量自然图像(ImageNet)中进行预训练,Student网络(S)在无缺陷数据集上进行训练(以Teacher网络的输出作为监督),比较S与T输出间的不同来判断该区域是否存在缺陷。
其中可以设置多个S,并且构造多尺度等方法构造ensemble。
相知
只谈关键技术
Teacher网络与Student网络具有相同架构,并且输入都是大小相等的图像块Patch,每个Patch在原图有着固定的感受野,利用Fast Dense Local Feature Extraction通过确定性转换应用于整幅图像(相比于将图片划分为一个个Patch来分

这篇博客介绍了CVPR 2020的研究论文,提出了一种名为Student-Teacher Anomaly Detection的方法,利用Teacher网络的预训练知识和Discriminative Embeddings进行异常区域识别。文章重点讨论了知识蒸馏和描述符紧凑性技术,并展示了如何通过多尺度和ensemble提高检测性能。
最低0.47元/天 解锁文章
1166

被折叠的 条评论
为什么被折叠?



