CVPR20 (AD) - Uninformed Students: Student–Teacher Anomaly Detection

这篇博客介绍了CVPR 2020的研究论文,提出了一种名为Student-Teacher Anomaly Detection的方法,利用Teacher网络的预训练知识和Discriminative Embeddings进行异常区域识别。文章重点讨论了知识蒸馏和描述符紧凑性技术,并展示了如何通过多尺度和ensemble提高检测性能。

原文地址

https://openaccess.thecvf.com/content_CVPR_2020/papers/Bergmann_Uninformed_Students_Student-Teacher_Anomaly_Detection_With_Discriminative_Latent_Embeddings_CVPR_2020_paper.pdf

论文阅读方法

三遍论文法

初识

在这里插入图片描述
本文提出了一个名为“Student-Teacher Anomaly Detection”的新框架,利用discriminative Embedding:首先Teacher网络(T)在大量自然图像(ImageNet)中进行预训练,Student网络(S)在无缺陷数据集上进行训练(以Teacher网络的输出作为监督),比较S与T输出间的不同来判断该区域是否存在缺陷。

其中可以设置多个S,并且构造多尺度等方法构造ensemble

相知

只谈关键技术

Teacher网络与Student网络具有相同架构,并且输入都是大小相等的图像块Patch,每个Patch在原图有着固定的感受野,利用Fast Dense Local Feature Extraction通过确定性转换应用于整幅图像(相比于将图片划分为一个个Patch来分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值