funasr VAD语音端点检测;sherpa VAD+STT识别

本文介绍了利用funasr进行VAD语音端点检测,通过检测音频帧判断语音的开始和结束,提高切割准确性。接着探讨了sherpa的VAD+STT识别,结合模型进行非流式ASR识别,提供了模型下载链接和运行示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、VAD 语音端点检测(funasr)

Voice Activity Detection 语音活性检测(VAD)也被称为语音端点检测,基本原理是判断一个区间内的音频(区间被称为一个“语音帧”),是有效语音,还是无效语音。通过连续的检测多帧,就能判断出语音的“开头”(从无效到有效)和“结尾”(从有效到无效),完成语音的切割。VAD的准确性和语音信噪比正相关,安静的环境准确性更高,也是为何需要麦阵降噪处理后的信号再做VAD。
在这里插入图片描述

参考:
https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary
https://zhuanlan.zhihu.com/p/111516373

输出的是时间戳毫秒,一段一段,例如:在这里插入图片描述

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值