半导体 pn 结的原理讨论集

(一)知乎用户

1. 芯片(集成电路)话题下的优秀答主

1,330 人赞同了该回答

请先看这个回答,理解一下什么是能带和载流子,半导体的导电性是怎么来的。

导带、价带、禁带、允带都是什么逻辑关系? - 知乎

然后再解释PN结。

首先假设我们有一块同一种单晶硅制成的P型半导体和N型半导体,他们的导带和禁带能级是一样的,唯一的区别是掺杂能级的位置:

由于掺杂能级的不同,P型半导体和N型半导体具有不同的电子分布和费米能级。纯粹的P型半导体,费米能级位于价带与掺杂能级之间;N型半导体费米能级位于导带与掺杂能级之间。这很容易理解,因为费米能级可以认为是半导体处于绝对零度时电子所处的最高能级,而绝对零度时的电子又是从低往高依次填充的。

当PN结形成的时候,P型半导体和N型半导体直接接触。之前曾经讲过热平衡时同一块半导体材料会具有统一的费米能级,所以当PN结形成时,半导体的能带会发生弯曲,使得P型和N型半导体的费米能级能够统一。

而能带是怎样弯曲的呢?首先我们考虑离PN结距离很远的地方,这里远在PN结电场的影响范围之外,显然能带应该是平直的,就像纯粹的P型或N型半导体一样。由于费米能级统一,所以P型半导体相对于N型半导体能带被抬升了:

中间的部分,就是PN结,能带被弯曲之后把P型能带和N型能带连接在一起。但是能带为什么会弯曲?具体又是怎么弯曲的?这就要从电场和载流子运动的角度来解释。

首先,载流子会发生扩散运动,从浓度高的区域往浓度低的区域运动。这是因为载流子一直在发生随机的热运动,而因为高浓度区域载流子更多,统计上从高浓度区域运动到低浓度区域的概率更大。所以在PN结附近,电子会往P型半导体扩散,空穴会往N型半导体扩散,扩散运动的速度正比于载流子的浓度梯度。

我们知道自由电子遇到空穴时会发生复合,而PN结一侧几乎只有电子,另一侧几乎只有空穴,所以电子和空穴会在PN结上大量复合,导致PN结两侧载流子浓度下降。而载流子浓度下降会使得半导体带电,这是因为N型半导体的电子来源于掺杂能级上的电子跃迁到导带,而掺杂能级失去电子之后变成了带正电的离子,PN结处的复合是N型半导体的电子与P型半导体价带中的空穴复合,相当于N型半导体失去了电子,P型半导体获得了电子,这就使得P型半导体带负电,N型半导体带正电。很快,PN结附近的载流子就全部复合了,此时这一区域只剩下了不能移动的带电离子,这一区域就被称为空间电荷区,也就是势垒区

突变型PN结的电荷分布、电场分布与电势分布

由于N型带正电,P型带负电,就形成了一个由N指向P的电场,这个电场使得电子从P向N,空穴从N向P发生漂移运动。然而前面提到扩散运动和这个漂移运动的方向正好相反,当两个运动的速率相同时,扩散运动和漂移运动互相抵消,PN结的载流子分布就处于稳定状态。

现在我们就能计算空间电荷区的电场是怎样弯曲能带的了。由于空间电荷区的电荷来源于电离之后的掺杂原子,可以认为空间电荷区的电荷密度就等于掺杂浓度。有了电荷密度,就能计算出空间电荷区内每一点的电场强度和电位,算出了各位置的电位,就可以画完能带图了。

接下来就该研究PN结怎么导电了。简单起见这里就做一下定性的描述,具体更准确的分析还是请看书。

从能带图可以看出,对于电子,可以轻易地从P型半导体进入N型半导体,但是P型半导体内电子非常少。而N型半导体中的电子,则需要越过一个势垒才能进入P型半导体。

当我们外加电压使PN结正偏时,外加电场与空间电荷区内建电场方向相反。这一外加电场使得空间电荷区出现一个与内建电势反向的偏压,N型半导体相对于P型半导体电位降低,势垒的高度减小。

由于势垒高度减低,N型半导体的电子在外加电场的作用下就有较大的概率能越过势垒到达P型区,产生电流,而P型半导体的空穴也是类似,此时我们就称PN结导通了。

除了正向偏压导通之外,PN结还会被反向击穿。反向击穿一般有两种,雪崩击穿齐纳击穿

雪崩击穿是当外加的反向电场足够大时,半导体内的载流子能量非常高,在和原子发射碰撞时足够破坏共价键,激发出新的载流子。这使得半导体内载流子浓度随着碰撞发生成倍增加,使得反向第电流急剧增大。

齐纳击穿则是由于反向偏压使得N型半导体的导带底部低于P型半导体的价带顶部,此时量子效应可以让p型半导体价带中的电子直接隧穿到n型半导体的导带中,形成电流。

以上就是PN结形成与导电原理的简单描述,有兴趣的朋友可以找《半导体物理》或者《半导体器件物理》的教材看看,上面有更准确、更详细的推导过程。

 

 

(二)木旦文

   理论物理专业,核聚变实验2年,射频开发12年

​ 关注

86 人赞同了该回答

错在理解的方式!2千字、3幅图、4小节,重新感受PN结。

大纲:

一、多子与少子:低调的名字;

二、正向导通:多子的接力;

三、反向截止:少子的无奈;

四、反向击穿:新的水源。

全文如下:

不再似懂非懂。

一、多子与少子:低调的名字

多子与少子,给我们的第一印象是,多子数量超过50%,少子数量小于50%。

事实上呢,典型的硅二极管,中等掺杂浓度一般是 1016��−3 ,则多子浓度等于掺杂浓度即1016��−3,少子浓度(由半导体浓度乘积公式计算得到)为104��−3。

多子与少子,相差了12个数量级,即多子数量占比99.99999999%,少子占比0.00000001%,所以说,多子少子的叫法,太低调了,太含蓄了。即使叫“极多子”与“极少子”,也是绰绰有余的。

多子少子可以低调,但对其电阻率的考察却必须高调。还是以中等掺杂的硅为例:

1)掺杂前,多子与少子的常温浓度数量级都为1010��−3,电阻率约为 106 Ω·cm,难以导电;

2)掺杂后,多子浓度达到1016��−3,电阻率减小到约为1Ω·cm,考虑到二极管管芯的尺寸级别为0.01cm(备注1),可估算出电阻约0.01Ω,小到可忽略;掺杂过的半导体,特别是重掺杂过的,常当导体看,也是这个缘故

3)掺杂后,少子浓度约为104��−3,假设只有少子参与导电,则电阻率约为1012 Ω·cm,大到已经跨入了绝缘体的行列了,所以只靠少子根本无法导电

有必要强调下,掺杂后的硅半导体,电子型是良导电的,空穴型也是良导电的,无质的区别。

二、正向导通:多子的接力

正向为什么导通?与其问什么,不如观察,导通电流是如何循环的。

简单的一个正向电路,如图,外部3V电源通过导线、电阻与二极管相连。

第一步:电池电势作用下,电池负极向外强势输出电子,正极向内强势吸入电子。

第二步:在 A-处,在外电场推动下,电子注入到电子半导体B-区;B-区是良好导电的,电子也在外电场的推动下,向中心移动,挤压中间的耗尽层;

还是第二步:在 A+处,在外电场吸引下,电子从空穴半导体B+区被吸走,相当于将空穴注入到B+区;B+区也是良好导电的,空穴也在外电场的推动下,向中心移动,挤压中间的耗尽层;

第三步:C处耗尽层,左右都受到挤压,宽度变小,内建电势相应变小,漂移变弱;平衡被打破,扩散强于漂移;净的效果是,B-区大量电子扩散注入到耗尽层,B+区大量空穴也扩散注入到耗尽层,在此相遇并复合掉,变成热能。(备注2)

简而言之,多子由电源提供,多子从两侧注入,多子向中间移动,多子在中间耗尽层内扩散并复合,过程是可持续的。而且,多子扩散呈现出的电流方向,与电源的电流方向,是一致的,所以导通;这一点,看似直白,却很关键,可惜教材中少有强调。

补充两点,加强一下感觉。

从电流的动力来源来看。A-与A+处的多子注入,B-与B+区的多子移动,都是由电池的电势能推动的;而C处耗尽层内的多子移动,是浓度梯度差的压力推动的,虽然内建电势是由外部电势削弱的。即,外部与内部,两股力量协作,里应外合。

从电流的承担者来看,在电子区由电子承担,在空穴区则由空穴承担,各管一段,是一个多子接力的过程,而不是一群电子或空穴从头走到尾

三、反向截止:少子的无奈

反向偏压时,如图,在外部电势能作用下,从电子区抽走电子,从空穴区抽走空穴;电子区的电子向外侧移动,空穴区的空穴也向外侧移动,耗尽层的宽度变大。

然后,就没有然后了。耗尽层内没有新的多子产生,由中间向两侧的多子移动,像无源之水,是不能持续的,多子电流无法形成。

这有别于通常的解释:“反偏下,内建电势增大,漂移强于扩散,净的效果是,多子无法扩散通过耗尽层 ,所以不能导通”,以前木旦也是认同的。

但是,即使多子可以扩散通过耗尽层,又如何?多子扩散呈现的电流方向,与外部电源的电流方向是相反的,导通电流还是无法形成;单个环路的电路,电流方向必定处处相同,某一段相反是不可能的。

所以,多子电流无法形成。那少子呢?

内建电势增大后,少子漂移增强,即在内建电场推动下,少子顺利通过耗尽层;而且,少子漂移呈现的电流方向,且外部电源是一致的;所以,少子电流是可持续的,是存在的。但是,这个电流太小了,小到不足以称之为导通。因为仅靠少子导电,电子区与空穴区半导体都是绝缘体,一个环路中有两段是绝缘的,导通是奢望。

少子太少了,这就是少子的无奈。

四、反向击穿:新的水源

雪崩击穿为例,有了上面的铺垫,理解是简单而自然的。在反向截止的分析中,多子电流无法形成的原因是,耗尽层中不能生产新的多子,多子电流是无源之水。所以关键是,在耗尽层中制造新的多子。

当反向偏压足够大时,内建电场也将相应足够大,大到可以将少子加速到,能把耗尽层中的硅原子直接撞出电子空穴对;而且,新生产的载流子也会在耗层中被加速,继续撞击硅原子,制造出更多的电子空穴对。所以此时,耗尽层中可以产生新的大量多子,如泉水一般喷涌而出。所以反向击穿时,电流增加得相当快。

问渠那得清如许?为有源头活水来。

全文小结:

为什么总是似懂非懂?因为没有入心,理论多是理性的,很难直接入心。

略去公式与模型,略去不必要的细节,洞悉真正的要点与本质,并凝炼成感性,让理论更容易被感知。本文是木旦的一次尝试。

感性的提炼,或许才是理论入心的必经之路。

木旦

2021年雨水 广州

(本文是木旦原创,欢迎赞同、收藏、评论、转发,但转载需本人同意)

原文收发于木旦专栏「大话半导体器件原理」

二极管5:PN结的单向导通原理155 赞同 · 64 评论文章正在上传…重新上传取消

目录

一,半导体初步理解

1,本征半导体

2, P型N型半导体

3,PN结

二,半导体再深入理解

1,本征半导体

2,P型N型半导体

3,PN结

三,从量子理论角度重新看半导体

1,本征半导体-固体量子理论基础

2,本征半导体-能级理论

3,本征半导体-费米能级理论

4, P型N型半导体-费米能级理论

5,PN结-费米能级

写在最后


二极管5:PN结的单向导通原理155 赞同 · 64 评论文章正在上传…重新上传取消

备注:

1)单个二极管晶圆的尺寸数量级0.01cm,参考Robert《半导体器件基础》第6.1.4小节

2)正偏下,多子扩散复合位置,小偏压时(小于0.3伏)主要在耗尽层内,大偏压时主要在耗尽层外, 参考Robert《半导体器件基础》第6.2.3小节。本文中为突出重点,有意简化为都在耗尽层内。

编辑于 2021-05-20 19:18

 

(三)匿名用户

17 人赞同了该回答

前面大神们已经解释得很清楚了,所以就在这儿补几张图,希望能帮助题主加深理解。

先明确一下一个我觉得题主可能没有理解到位的重要基本概念:二极管并不是只有一个方向能通电,另一个方向绝对绝缘

二极管的IV图如下

(来自Google,图侵删)

可以看到在反向击穿以前二极管也是有电流的,只是非常小而已。反而是在正向偏置情况下,当外接电压小于内电压的时候,二极管不导电。(如图,Si的内电压一般为0.7V)

实验告诉我们二极管可以双向导电

理解这一点之后,希望题主能明白为什么自己的解释不正确了。因为你还没完全弄明白自己要解释的现象啊⊙_⊙

下面开始正文

这是热平衡下的情况。扩散电流(J diffusion)和漂移电流(J drift)是相等的。

这是正向偏置下的情况。N区的能级相对P区升高。考虑电子的运动:P区有更多的empty states,更多N区电子会扩散到P区。这种情况我们称作majority carrier injection(多子注入?)

正向偏置下的电流情况

这是反向偏置下的情况。N区的能级相对P区降低。考虑电子的运动:P区的empty states减少,更少的N区电子会扩散到P区。这种情况我们称作minority carrier extraction(少子提取?)

反向偏置下的电流情况

最后,根据二极管的电流公式

正向偏置时Va为正。因此电流较大。

反向偏置是Va为负。因此电流较小。

题主可以自行深入学习一下电流公式的推导过程。祝开心ฅ•̀∀•́ฅ

 

 

(四)牧神园地

浙江大学 仪器科学与技术硕士

​ 关注

1 人赞同了该回答

关于“PN结”的理解有好几个层次,对于半导体器件的使用者,对PN结原理感兴趣的,还有希望更深层次想了解其原理的。我试着从三层次来理清楚“PN结”原理。

~更多硬件相关内容请关注个人主页“专栏”~


一,半导体初步理解

半导体最近几年在国内大火,其知名度跨越了行业的鸿沟,它事实上已成为了芯片的代名词。那到底啥是半导体呢?

“半导体” = 导体的一半?我们就从名字上进行理解:顾名思义,是常温下导电性能介于导体与绝缘体之间的材料。不错,它指的就是一种材料,属于“固体材料”中的一种。

我们常用的半导体材料有:硅(Si),锗(Ge),砷化镓(GaAs),氮化镓(GaN)等;这些材料有一个共同特点:最外层轨道价电子都是4个,这样的结构可以形成特殊的晶体结构(金刚石晶格结构,金刚石也是一种半导体材料),一个原子同周边的原子形成稳固的共价键结构,每个原子周边达到8个满电子状态。

1,本征半导体

普通半导体是不能成为制作芯片原材料的,我们需要非常非常非常高纯度(99.9999999%,9个9;24k金是99.99%纯度,在半导体材料的纯度面前只能说是杂质太多)的单晶半导体:本征半导体。本征半导体不含杂质的纯半导体,其电子很难从共价键中逃脱出来,以至于在绝对零度条件下完全不能导电。但是在室温环境下,会有少量电子会从共价键中脱离出来形成“自由电子”,而该共价键由于少了一个电子会形成了“空穴”。

——这些“自由电子”和“空穴”在半导体中就称之为载流子,正是由于载流子的存在,所以本征半导体才有了“半”导电性;载流子浓度的多少,决定了材料的导电性能。

本征半导体在不同温度下其稳态“电子/空穴”浓度也不同,随温度(粒子热运动剧烈程度)的增加,“电子/空穴”稳态浓度也会相应增加;需要说明的是“电子/空穴”稳态浓度是一个动态的平衡:电子不断脱离共价键成为“自由电子”,同时“自由电子”又不断被共价键“空穴”捕获;所以我们又不得不引出两个重要概念:本征激发复合;本征激发和复合的过程伴随着能量的变化。

  1. 本征激发:如左下图所示,由于受到光照或温度上升影响,少数共价键中价电子积累能量挣脱原子核束缚而成为“自由电子”的现象;
  2. 复合:如右下图所示,“自由电子”跃迁至共价键空穴中,与空穴结合的过程;该过程会伴随能量的释放。

本征激发和复合的过程

2, P型N型半导体

然而本征半导体这玩意对我们来说感觉并没啥鸟用:本征半导体 “自由电子”数量非常非常少(硅电子/空穴浓度:10¹⁰ cm⁻³体电阻率约为10⁶Ω·cm),以至于其导电性能非常之差;但这并不是重点,重点是:本征半导体与导体/绝缘体只是导电性能好坏的差别,我想要获得特定阻抗的材料,干嘛非得用半导体呢?所以在1833年英国的巴拉迪就发现了半导体,但它一直没有被实际应用。

不过我们要让半导体变的有用,首先得提升它的的导电性能:掺入特定杂质,让它成为杂质半导体;有两个方法来提升半导体的导电性能,从导电性能角度来说效果是完全一样的。

  1. N型半导体:掺入5价杂质元素(磷、砷)的半导体;5价杂质原子与4价硅原子结合成共价键(8个电子),那必然会多余1个“电子”无共价键束缚,形成“自由电子”,而杂质原子因带正电荷成为正离子
    1, N:Negtive,表示半导体中多数载流子是“自由电子”,带负电;
    2, 5价杂质元素称为施主杂质,施与它人电子。
  2. P型半导体参入3价杂质元素(硼、镓)的半导体;3价杂质原子与4价硅原子结合成共价键(需要8个电子),缺了1个价电子,在共价键中留下1个空穴;空穴很容易捕获电子使杂质原子成为负离子

1, P:Positive,表示半导体中多数载流子是“空穴”,带正电;

2, 3价杂质元素称为受主杂质,接受它人给与的电子。

我们通过在本征半导体中掺入不同的杂质,完美的得到了P/N型杂质半导体;那首先需要理清楚P(N)型型半导体的几个问题:

  1. 杂质半导体,举个栗子:N型半导体掺入非常多的“自由电子”,那N型半导体中还存在空穴么?
    ——当然是有的,因为只要温度高于绝对零度,半导体的本征激发和复合就不会停止,不断产生电子-空穴对,虽然N型半导体将空穴数量“压制”的更少了,但空穴还是不断在动态的激发和复合着。在N型半导体中自由电子称为:多数载流子(简称多子),那么空穴就被称为:少数载流子(简称少子)。同理P型半导体也一样。
  2. 那杂质半导体的多数载流子浓度有多少呢?
    ——一般典型硅二极管中等掺杂 N的“自由电子”(多子)浓度是:10¹⁶ cm⁻³,空穴(少子)浓度是:10⁴cm⁻³;两者相差12个数量级,即:多子数量占比99.99999999%,少子占比0.00000001%;所以多子应该被理解为“极多子”,少子应被理解为“极少子”。掺杂后由于多子浓度的急剧增加,电阻率减小到约为1Ω·cm,考虑芯片中N区的尺寸非常小,所以其电阻值是非常小的。
  3. 杂质半导体,例如N型半导体有很多“自由电子”,它是否带负电?
    ——不带电;因为“自由电子”虽然带负电,但由于杂质原子失去了电子而带正电;而本征激发和复合由于是成对出现的,整体呈现不带电;好比金属导体,它虽然有非常多的“自由电子”,但金属本身在自然状态下是不带电的。同理P型半导体也一样。
  4. 杂质半导体,举个栗子:N型半导体的“自由电子”(多子)和“空穴”(少子)浓度受什么影响?

——浓度会受到掺杂浓度和温度影响:

1, N型半导体的“自由电子”浓度主要来源于掺入杂质比例的多少,如果掺杂浓度大那么“自由电子”浓度就大;而“空穴”的浓度也与掺杂浓度相关,由于掺杂浓度大导致“自由电子”浓度增加,从而“空穴”被复合的概率更高,浓度就相应减小了;

2, “自由电子”和“空穴”浓度与温度相关,温度升高则激发的程度更加剧烈,导致“自由电子”和“空穴”浓度都增加;虽然“自由电子”浓度的增加对于N型半导体来说影响不大,但“空穴”浓度增加对于N半导体来说就有明显的作用。同理P型半导体也是一样。

解答了这几个问题,不知道大家对PN型半导体是否认识更深了一点点呢,如果都理解清楚了,那我们再接下去看。

3,PN结

我相信大家对杂质半导体的特性已有了基本认知,接下来是本章的核心问题:为什么非得有P型N型两种半导体,并结合成PN结才能用?

我们知道单纯的PN型半导体的掺杂浓度越高,那么其导电性能就越好,但导电性能好有毛用啊?如果只是提升其导电性能,需要先提纯半导体至9个9纯度,再掺入杂质,这完全是得不偿失;还不如直接使用金属来的便宜和方便。

如果将P型半导体和N型半导体组合起来,就会发生一个神奇的变化:形成一个PN结,即变成一个单向导通的器件(不可控开关)。固定不变的东西对“信息”没有任何用处,而“开关”就能实现0和1的变化,是信息产生、存储、处理的基本单元,所以我们可以利用半导体在非常小的尺寸上实现开关功能,这样半导体就变的非常有用了。其实绝大多数半导体器件最基本的结构就是PN结,理解了它,就可以理解半导体器件的工作原理和基本特性。

——“开关”才是信息或数据的关键,如果需要传递/存储/处理信息,那么必须要有变化才行;你品,再细品。

如下图所示,PN结形成于P型和N型半导体的交界处:N区的多子(自由电子)向 P区扩散,P区的多子(空穴)向N区扩散。N区由于失去了“自由电子”剩下带正电离子而呈现正电,而P区由于失去了“空穴”剩下带负电离子呈现负电,而此时PN结附近区域的自由电子和空穴全部复合,只剩下了不能移动的带电离子,这一区域被称为空间电荷区也称为势垒区或耗尽区。而空间电荷区内会形成一个内建电场,其方向是由N区(带正电)指向P区(带负电)。

——空间电荷区的名字非常多,各种不同的资料上的叫法也各不相同,但指的都是同一个东西。

正是由于内建电场的存在,PN结呈现单向导通特性,工作原理如下:

  1. 当在PN区加正偏电压:外电场方向与内建电场方向相反,内建电场强度减小,空间电荷区范围减小,驱使N区的多子(自由电子)和P区的多子(空穴)进入空间电场区,两者在空间电荷区进行复合,甚至N区的自由电子和P区的空穴扩散到对方区域,从而在P->N方向导通电流:一旦PN结打通后,正向电流随着正向电压指数级增加。
  2. 当在PN区加反偏电压:外电场方向与内建电场方向相同形成叠加效果,内建电场强度增加,导致空间电荷区范围增大;
    ——我们再来理解一遍:P区加负电,N区加正电,那么P区的“空穴”向P区电极端(左侧)移动,N区的“自由电子”向N区电极端(右侧)移动,导致中间的空间电荷区范围增加。与此同时:P区的少子(自由电子)和N区的少子(空穴),受到N->P电场方向移动,形成PN结的反向电流。
  3. 当PN区反向电压继续增加:空间电荷区内电场强度不断增加,以至于将空间电荷区共价键电子大量强拉出变成自由电子,形成较大反向电流,称为齐纳击穿
  4. 随着PN区反向电压再增加:从共价键中强拉出来自由电子的能量也不断增加,超大能量的“自由电子”轰击半导体其它共价键中电子,产生更多的“自由电子”,这些“自由电子”接着再轰击其它共价键中电子,形成雪崩效应,造成超大反向电流,称为雪崩击穿。

我们从上述的4种情况初步学习并理解了PN结的基本特性;针对PN结本身,我们同样需要再深入思考如下的几个问题:

  1. PN结有一个内建电场,那它对外带电么?
    ——如同杂质半导体不带电原理一样,虽然PN结由于多子的扩散形成了内建电场,但作为整体:正离子数量=自由电子数量;所以是不带电的。
  2. PN结内电场强度很大么,如何能形成击穿?

——非常大,按内建电势约0.7伏,落在约3微米的势垒区上,内建电场的平均值为约2*10⁵V/m;正是由于有巨大的电场强度,才能将共价键中电子强拉出来变成自由电子,同时也使得PN结非常的牢固。

——那么内建电场大小为2*10⁵V/m算是什么级别?举个栗子:若电场为2.5V/m,铜导线融化;11V/m时,铜导线气化。

二,半导体再深入理解

上面是对PN型半导体以及PN结的初步理解,是不是觉得半导体的知识也不过如此,一般来说硬件工程师对半导体的认知止于“初步理解”,因为硬件工程师所需的数据,器件资料(Datasheet)都以参数的形式给到我们,我们只需要根据参数选择器件,而并不需要理解不同器件为什么会有不同的参数。

有一天我看到了IGBT这个网红神器,产生了一个疑问,说是IGBT集合了BJT和MOSFET的优点:BJT(三极管)的优点是低饱和电压(导通电阻低,通流能力大),MOSFET(MOS管)部分的优点是开关速度高,驱动功率小。在我个人以往的认知和工作经验中,MOSFET明显是全方位碾压BJT,在缓启动电路中,在开关电源电路中应用的MOSFET通流能力至少是50A以上,100A以上也非常常见,但BJT只用过小电流的,而且BJT饱和导通时Vce至少要0.3V……。凭什么说BJT的导通能力大,饱和电压小?

然后又引出了更多的问题:BJT又称为双极性晶体管,为什么叫双极性? MOSFET结构同BJT类似(PNP或NPN)为什么不是双极性?搞得我一个头两个大,烦躁不已。

我有觉得对于硬件知识来说最重要的是基础概念,所以我们重新回到半导体的基础概念重新再来理解一遍。

1,本征半导体

我们从半导体材料重新开始,用更深入更基础的概念来理解:到底什么样的材料能成为半导体呢?

  1. 半导体材料必须是位于元素周期表Ⅳ族的元素半导体材料或化合物,因为只有4价的元素/化合物形成的共价键才是不会剩余“自由电子”或“空穴”,才能成为半导体;
    ——其中大部分化合物半导体材料是Ⅲ族(3价)和Ⅴ族(5价)元素化合形成的,组成了最外层电子数量为8个,效果同4价的硅、锗一样。
  2. 固体可分为:无定形、多晶和单晶固体三种基本类型;
    1, 无定形固体:只在几个原子或分子尺度内有序;
    2, 多晶材料:在许多原子或分子的尺度上有序;
    3, 单晶材料:在整体范围内都有很高的几何周期性,其优点在于其电化学特性通常比非单晶材料要好;半导体材料是单晶固体,整体必须要有有序的结构,链形态完整。
  3. 单晶材料中原子的周期性排列称为晶格,如下图所示,考虑三种晶格结构,不同的晶体结构和晶格尺寸,决定晶体的不同特征;
    1, 简立方,如下左图;
    2, 体心立方,如下中图;
    3, 面心立方结构,如下右图。

4. 常用半导体材料:硅、锗;具有金刚石晶格结构;如下图所示,这种结构基本上是缺四个顶角原子的体心立方结构;四面体中的每个原子都有四个与它最邻近的原子;

5. 晶体中的原子之所以能结合在一起,是因为它们之间存在着:结合力和结合能。带正电的原子核和带负电的电子必然要和周围其他原子的原子核和电子产生静电库仑力(电磁力),其中起主要作用的是各原子的最外层电子;有化学键:离子键(H2O),共价键,金属键;物理键:范德华键、氢键;

1, 共价键:原子之间通过共用电子对或电子云重叠而产生的键合,有方向性和饱和性。靠共价键结合的晶体称为共价晶体或原子晶体;原子晶体有熔点高,硬度大,导电性差的特点;

——单晶半导体形成的是共价键。

2, 金属键:由失去价电子的原子核和自由电子组成的电子云之间的静电库仑力而产生的结合。无方向性和饱和性。

——金属最显著的物理性质是具有良好的导电性和导热性。

3, 离子键:正负离子依靠静电库仑力产生键合,特点是没有方向性和饱和性;主要依靠静电库仑力而结合的晶体称为离子晶体。离子晶体结构稳定,宏观性质上有熔点高,硬度大,导电性差的特点;大多数离子晶体对可见光透明;

4, 范德华键:通过“分子力”而产生的键合。

通过这些分析,我们初步了解了固体材料的一些基本概念,这些概念有助于更加深入理解半导体本身。

2,P型N型半导体

对于P型或N型半导体,同样有一些问题需要更加深入思考;

  1. P型半导体的多数载流子是“空穴”,那“空穴”能导电么?
    ——N型半导体的导电机制与金属一样,我们很容易理解其导电的原理;但是空穴本身并不能移动,它被紧紧锁定在原子周围,所以按理来说“空穴”越多则“自由电子”越少,直观理解P型半导体的导电性能就越差;但实际情况非常却违反直觉:“空穴”同样能够导电,且“空穴”浓度越大导电性能越强。接下来详细分析P型半导体的导电机制:
    1, 如图下所示为P型半导体,在外加电场的作用下“自由电子”在电极负端进入P型半导体共价键空穴(自由电子被空穴捕获),空穴相邻位置价电子会在电场作用下继续移动填充至空穴,从而产生新的空穴,这个过程可以等效为:空穴移动,因此空穴也被认为成是正电荷。在模型中空穴看成正电子,工作原理同自由电子相同,运动方向与自由电子相反。
    2, 我们将“正电子”看成是一个真实存在,从“正电子”角度再来理解空穴导通状态:“正电子”从外加电场的电极正端输入流向电极负端。

2. 那么我们既然将“空穴”等同于“自由电子”一样看作真正的粒子,那么在同样电场作用下它们的移动速度一样么?(正电子和自由电子的质量是否一样?)
其实还是不一样的,由如下两个方面决定:
1, 假如有个“粒子”在电场作用下不受任何阻碍,那么该“粒子”可以被不断的加速,直至接近光速;但实际上半导体中载流子在受到电场力作用加速后,每过一段距离就会与半导体中其它粒子(原子)发生碰撞,从而降低了漂移速度(漂移电流),但漂移速度还是正比于电场强度,比例因子u称为迁移率;
2, 虽然空穴的移动直观上是由于自由电子的移动所导致的,如下图所示,实际测试及理论分析空穴的等效质量要大于自由电子质量,所以在相同电场作用下空穴迁移率一般要低于自由电子迁移率。
——这是为什么MOS管采用N沟道和晶体管使用NPN比较多的原因,N沟道更容易制造出大电流器件。

3. 我们从前面对半导体的学习中,了解到多子占据了杂质半导体的绝对地位(10⁶:1),那么半导体导电只是多子的运动么?或则说少子就不重要了么?

1, 首先半导体的导电不只是多子的运动,举个栗子:在反向漏电/击穿情况下,甚至是少子占了主要作用;

2, 在正向导通情况下:以N半导体为例,多子(自由电子)受外加电场的作用从负极移动到正极,少子(空穴)从正极移动到负极;在这种情况下N型半导体的少子对电流几乎没有帮助;

3, 在结合成为PN结后:由于少子扩散作用,N型半区的多子(自由电子)扩散到P型半区成为少子,迫使P区增加空穴浓度以保持电势平衡,对二极管形成电导调制效应,对导通电压及电流产生非常重大的影响(关于电导调制,具体下面PN结详细分析)。

3,PN结

又来到了PN结,其实说起PN结,它无时不刻透出了一股神秘的气息,越想要搞明白它,它反而越会让你产生更多的疑问。来吧,集中精神、以气驭剪,我们继续来看看还有哪些疑问。

  1. PN结中最神奇的就是空间电荷区,那它是如何形成并稳定的呢?


1, 在P和N型半导体接触之前,P型半导体有很高浓度的“空穴”,N型半导体有很高浓度的“自由电子”;当P和N型半导体接触,以N半区为例:“自由电子”会从浓度高的N区向浓度低的P区运动;
——这种由于浓度梯度导致的载流子扩散运动产生的电流称为扩散电流,扩散电流的大小只与浓度梯度有关;
2, 由于扩散运动后,P区留下负离子,N区留下正离子,在PN之间形成内建电场,方向为N区指向P区;内建电场会使P区的“自由电子”向N区移动,N区的“空穴”向P区移动。
——这种由电场作用使载流子产生漂移运动形成电流称为漂移电流,漂移电流与电场强度相关;
3, 空间电荷区是:多子“扩散电流”和少子“漂移电流”的平衡;以N半区为例:“自由电子”(多子)会不断从N区扩散到P区,但是内建电场会使“自由电子”漂移回到N区,并形成动态平衡;同时在空间电荷区内本征激发的空穴-电子对,会在内建电场的作用下返回到各自P区和N区,在空间电荷区保持耗尽的平衡状态。

2. 那我们从扩散电流和漂移电流的原理出发,如何解释正向导通和反向截止?

1, PN结外加正向电压:外加电场减小了PN结内建电场,从而削弱了反向漂移电流,而扩散电流保持不变(只与浓度梯度有关);同时在外加正向电场作用下负极向外强势输出自由电子,正极向内强势吸入自由电子(输出空穴),在PN结外区域保持持久的扩散运动和漂移运动;
2, 上图中A-处,“自由电子”注入到半导体B-区,“自由电子”在外电场和扩散运动的推动下,向中心移动,挤压中间空间电荷区;在A+处,在外电场吸引和扩散运动推动下,“自由电子”从B+区被吸走(“空穴”注入到B+区);“空穴”也在外电场和扩散运动的推动下,向中心移动,挤压中间空间电荷区;
3, 图中C处空间电荷区在受到挤压情况下,宽度变小,内建电场也相应变小,漂移电流变弱;此时平衡被打破,扩散运动强于漂移运动;净效果是,B-区大量“自由电子”和B+区大量“空穴”扩散注入到空间电荷区,在此相遇并复合(小注入情况);由于扩散运动影响,B-区的自由电子(多子)会扩散至B+区(变成少子)形成浓度梯度,同理B+区空穴(多子)会扩散至B-区(变成少子)形成浓度梯度,电流越大其对应的少子浓度越大(大注入情况);
4, 外加反向电压时:在外部电场作用下,从N区抽走“自由电子”,从P区抽走“空穴”;N区的“自由电子”和P区的“空穴”向外侧移动;同时空间电荷区宽度增加,内建电场变大,漂移电流增加(二极管反向电流)。

3. 在杂质半导体中少子浓度远小于多子,但为什么PN结少子浓度为什么能表征了正向导通电流的大小?
1, 当PN结外加正偏电压时:注入的“自由电子”和“空穴”会随电压增加逐渐穿过空间电荷区,并复合空间电荷区存在过剩载流子;随着外加正偏电压增大,P区“空穴”(多子)穿过空间电荷区注入N区内“空穴”(变成少子)的数量也会增加,“空穴”扩散到N区内,并与N区“自由电子”(多子)发生复合,形成动态的平衡;所以问题中所说的“少子”浓度是指:P区的多子扩散到了N区变成的“少子”,而不是P区半导体原本就存在的“少子”;同理N区内少子(自由电子)也经历了同样的过程;
2, 如下图所示,由于PN结正向导通后载流子的扩散运动,P区中的少子(自由电子),N区中的少子(空穴),伴着远离空间电荷区浓度逐渐减少:即离PN结越近少子浓度最大,离PN结越远少子浓度指数级减少,呈现一定的浓度梯度;当正向电压增加时,N区将有更多的多子(自由电子)扩散到P区,成为P区少子(自由电子)的浓度梯度增加;反之正向电压减少,浓度梯度减小;


3, 流过PN结的电流为:电子电流和空穴电流之和;假定PN结内电子电流与空穴电流是连续的(定值),所以PN结的电流即为x=0处的少子空穴扩散电流和少子电子扩散电流之和(假设空间电荷区以外区域的电场为0,忽略任何少子漂移电流成分);


4, 计算空间电荷区边缘处的少子扩散电流密度:P区与N区的“少子扩散电流”密度随着距离指数衰减(远离PN结越远,被多子复合掉的概率越大),但PN结的总电流为常量,所以:总电流-少子扩散电流=多子漂移电流;
5, 远离PN结区域的P区“多子空穴漂移电流”既提供了穿过空间电荷区向N区注入的空穴,又提供了因与过剩少子(自由电子)复合而损失的空穴;该原理同样适用于N区内电子的漂移电流;根据双极输运理论推导,在确定PN结的电压-电流关系式时,主要考虑的是少子的运动。
6, 少子扩散效应,对二极管/三极管特性的影响:

(1)扩散电容:随着外加电压的变化,其P区与N区“少子”电量Q也发生变化:ΔQ;少子电荷存储量的变化与电压变化量的比值称为:扩散电容(nF级别,比势垒电容大3~4数量级,影响二极管/三极管开关频率,影响开关电源效率);正向电压与扩散电容成指数级关系。

(2)电导调制:在小电流时二极管的电阻主要是P区和N区的欧姆电阻,其阻值相对较高且保持不变,所以此时二极管正向导通电流随压降的上升而线性增加:I=U/R。

——当PN结流过正向电流较大时,由于P区多子注入并积累在N区变成的少子(空穴)浓度将大增,此时在N区靠近空间电荷区的电势要远高于N区电极端,所以导致有更多的“自由电子”会从负极进入N区,整体上在N区的“自由电子”浓度大幅增加,直至N区内部电场与扩散电流建立平衡,此时PN区的电阻率明显下降,即电导率大大增加,二极管正向导通电流随压降的上升急剧增加。

——根据电导调制的原理解释了:三极管饱和压降小于MOS管,通流能力大于MOS管的原因。

不可否认,这部分内容烧脑了很多,“多子”与“少子”不断来回折腾,多子穿越了空间电荷区又变成了少子,这个少子由于要被多子复合,所以为了保持其平衡需要有更多的多子进来。所以:犯困时,不要看;精力不足时,不要看;激烈运动之后,也不建议看。

下一章节,更烧脑哦~

三,从量子理论角度重新看半导体

通过之前两章节的学习与思考,我们初步理解了半导体材料和PN结的工作及特性的基本原理,感觉PN结已经能被圆满地解释通透了;我都信心满满地以为自己已经搞懂了PN结,直到有天“碰到”了肖特基博士的二极管——肖特基二极管,产生了两个疑问始终不能解决:

  1. 金属的“自由电子”浓度远大于N型半导体,为什么N半导体侧自由电子反而会“扩散”到金属侧?
  2. 是否有更深层次的理论来“量化”半导体载流子和电流-电压关系?

——“量化”这词,是不是看起来就很高级?(以后再来分析“量化”为什么很高级)

我以为自己已经看到了整个世界,却不知道我看到的只是世界的一个角落。疑问就像是新世界的大门,它让你有机会看到另一方天地,你要做的便是找到这扇大门和钥匙,打开它,走进去。

所以我们现在要做的是放下原先地“偏见”,从量子理论的角度重新认识半导体,同时在学习和理解的过程中,与原先的知识相互印证。

1,本征半导体-固体量子理论基础

我们要通过量子理论来解释半导体,首先得了解一下量子理论是啥;不求理解,只是了解下量子理论的三个基础原理:(1)能量量子化理论;(2)波粒二相性原理;(3)不确定原理。

——量子理论的这几个基础原理,在 “量子论”的分享中会详细介绍。

  1. 能量量子化理论,说明光子能量跟频率成正比:
    1, 根据经典物理学理论,只要光强度足够大,电子就可以克服材料功函数(电子逸出材料表面所需的最小能量,肖特基二极管分析中用到)从表面发射出去,而该过程与照射光的频率无关;
    2, 实验结果是:在恒定光强照射下,光电子的最大动能随着光频率呈线性变化,其极限频率为v = v0,低于此频率将不会产生光电子;
    3, 1900年普朗克提出加热物体表面发出热辐射是不连续的假设,即所谓量子;
    4, 1905年爱因斯坦提出了光波也是由分立粒子组成的假设(光子),从而解释了光电效应(爱大神因此获得诺贝尔物理学奖);具有足够能量的光子,可以在材料表面激发出电子;而光子具有超出功函数所需的能量将转变为光电子的动能;
    5, 光电效应体现了光子不连续的本质,同时表现出光子的粒子性;而光子的能量与波长呈倒数关系:波长越短,能量越高。
  2. 波粒二相性原理,说明粒子具有波动性,符合波动理论:
    1, 在光电效应中光波表现出粒子的特性,该特性有助于解释电磁波的康普顿效应实验:实验中X射线照在固体表面,其中一部分射线发生偏转,并且偏转的频率较入射波发生变化;实验结果显示X射线两字与电子之间相互作用及你却符合“撞球”式的碰撞规律;
    2, 1924年,德布罗意提出存在物质波的假设,既然波有粒子性,那么粒子也应具有波动性,其假设就是波粒二象性原理;
    3, 1927年Davisson和Germer设计了一个实验:利用加热的灯丝发射电子束,经过加速后射向镍晶体,同时检流计在不同角度探测散热出的电子;其散射电子的角度分布于光栅衍射所生成的干涉图形非常类似。
  3. 不确定性原理,说明对于任何粒子,无法确定其准确位置,这只是个概率问题:

1, 1927年出现了海森堡不确定原理,最初为描述较小粒子而提出,用于描述哪些不能确定状态的亚原子粒子;

2, 不确定原理的首要观点是:对于同一粒子不可能同时确定其坐标和动量;第二个观点是:对于同一粒子不可能确定其能量和具有此能量的时间点;

3, 不确定原理的一个结论是:无法确定一个电子的准确坐标,那么将其替换为:确定某个坐标位置可能发现电子的概率。

2,本征半导体-能级理论

根据量子力学理论,被束缚在原子周围或有限空间电子的一个重要特性:电子的能量只能是分立值,即能量的量子化。用人话来说就是:电子只能出现在原子周边的一些特定能量轨道(能级)上。

再根据泡利不相容原理:任意给定量子态只能被一个电子占据。再用人话来说就是:同一能量轨道(能级)上的电子最多只能有两个自旋方向相反电子(电子的自旋产生磁矩,自旋电子的不平衡产生磁体)。

——宇宙中的物质拥有体积,我的手不能穿越我打字的键盘,而且也不会从地面掉进地心,这都是因为泡利不相容原理。

我们综合两大原理来描述电子:电子只能出现在原子周边的一些特定能量轨道(能级)上,而且同一能量轨道(能级)上的电子最多只能有两个自旋方向相反电子。

——举个栗子:H(氢)原子只有一个电子轨道(1s),最多允许有2个电子占据该轨道(能级状态)。随着原子核数量增加,电子层数增加,电子从最低能量(离原子核最近)慢慢填充,能量越来越大;第二层有4个电子轨道(2s+2p:s亚层有1电子轨道,p亚层有3个电子轨道)最多允许8个电子,第三层有8个电子轨道(3s+3p+3d:d亚层有5个电子轨道)最多允许16个电子,以此类推。这些电子轨道(能级状态)就是原子的能级。大家可以看到每一层对应不同数量的电子轨道,每个轨道允许2个电子占据;如下图所示。

  1. 能带:当由许多个原子组成晶体时,由于晶体内原子之间的相互作用,原子能级会发生移动,原本一条能级变成一组差别细微的能级状态——能带(也称为允带:允许电子落在该位置);由于能带内不同能级的能量差别非常小,所以很多时候在能带内可以忽略间隔,认为能量是连续的。
  2. 禁带:能带之间存在没有能级的间隔,这个间隔就是禁带;
    ——电子无法落在禁带,甚至在不同能级跃迁时,也不可能出现在能带之间的禁带。

3. 满带:当原子处于基态时,所有电子从最低能级开始依次向上填充;电子刚好填充到某一个能带满,被填满的能带称为满带;

4. 价带(价带顶:Ev):也称价电带,通常是指半导体或绝缘体中,在0K(绝对0度)时能被电子占满的最高能带;
——对半导体而言,此能带中的能级基本上是连续的,价电子不能在固体中自由运动,但若该电子受到光照/加热,它可吸收足够能量而跳入下一个容许的最高能区(导带),从而使电子可在固体中自由运动。

5. 导带(导带底:Ec):由自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围;
——对于金属,所有价电子所处的能带就是导带;对于半导体,能量最高的价带到下一个能带(导带)的禁带宽度并不大,电子跃迁到到能带后就可以自由移动。 

6. 价电子:处在原子轨道中并呈键合状态(离子键,共价键,金属键、范德华建等)的电子。

——对于金属,所有价电子所处的能带就是导带;对于半导体或绝缘体,所有价电子所处的能带就是价带,比价带能量更高的能带是导带。

3,本征半导体-费米能级理论

我们第一步了解了原子中的电子能级结构,接下去就是要理解另外一个重量级的概念——费米能级;费米能级不是固定在如上描述中的任何一个能级/带中,它可以处于能带中的任何位置,当然也可以处于禁带之中。那它到底是个啥?

费米能级是指:在0K(绝对0度)条件下,电子充满能级所需要的阈值;即在费米能级以下的能级(能带)将被电子填满,而高于费米能级以上的所有能级(能带)都为空。还是不理解?好,我们再用人话来转述一遍:在绝对0度条件下,电子只能占据费米能级以下的能级(100%),但在大于绝对0度的任何温度时,占据费米能级的概率是50%。

——说到底,费米能级就是电子出现在该能级位置的概率,绝对0度时所有电子在费米能级以下,但是大于绝对0度时,电子就有一定的概率跃迁到更高级的能带中去。

如果还是看不懂也没关系,再举一个更普通的栗子:假设原子是地球,电子是水分子,那么费米能级就是海平面,在绝对0度时所有的水分子都在海平面以下,但在大于0K(绝对0度)条件下,有一定概率的水分子会气化,飞到水平面以上;那这个海平面就是费米能级。

如下图是不同温度下费米概率函数与能量之间的关系:横坐标为电子所处的能量,1/2概率处是费米能级,大于费米能级的能量越大,电子占据该能量的概率就越小,小于费米能级的能量越小,电子占据该能量的概率就越大。

我们既然学习了费米能级,那么就用费米能级的理论再来重新认识下:金属导体、半导体和绝缘体三种材料;如下图所示。

  1. 金属:如上述章节所述,固体金属原子之间会形成键结构:金属键;它是失去电子的原子核和自由电子组成的电子云之间的静电库仑力,所以很多金属的价带和导带是重叠的。
    ——费米能级处于金属导带中间,说明金属在0K(绝对0度)条件下存在可以自由移动的电子。
  2. 半导体:半导体的价带和导带是相互分离的,本征半导体的费米能级在导带和价带的正中间,在绝对0度条件下电子能级低于费米能级的价带中,所以半导体中没有可移动的自由电子;但在大于绝对0度条件下电子有一定概率跃迁到导带能级,形成自由电子,且随着温度的增加,禁带宽度由于原子热振动影响到了能带,其能带之间的间隙(禁带)会变窄,所以载流子的浓度也会增大,导电性能增加;
  3. 绝缘体:绝缘体同半导体一样,费米能级在导带和价带之间,只是导带底(Ec)和价带顶(Ev)的禁带宽度远大于半导体,所以电子从价带顶跃迁到导带底的概率会小很多,导致绝缘体的导电性能会差很多。

4, P型N型半导体-费米能级理论

既然咱们都已经学了费米能力的理论,那么就用费米能级来解释:P型N型半导体由于掺入杂质,其费米能级也发生了相应的变化;分别看下P型和N型半导体的变化过程:

  1. N型半导体:如下图所示,由于掺入带5个电子的杂质原子,其中4个电子与半导体结合成共价键;同时在禁带中靠近导带底部位置引入一组能级:施主能级,该能级是杂质原子剩余的1个电子的能级,它非常容易获得能量进入导带成为自由电子;这种类型的杂质原子向导带提供了电子,称之为施主杂质原子;
    ——由于施主杂质原子增加导带电子,并不产生价带空穴,所以此时半导体称为N型半导体(N表示带负电电子)。

2. P型半导体:由于杂质原子带3个价电子,并且与半导体结合成共价键,有一个共价键是空的;由于加入杂质后需要一个电子来填充这个“空”位,此时的杂质原子带负电,所以填入空位的电子能量必须比价电子能量高(同性相斥),但占据“空”位电子并不具有足够的能量进入导带,而是靠近价带顶部;价带上的电子能很容易跃迁到杂质“空”位,造成其它价电子位置将变空,空穴可以在晶体中运动形成电流;杂质原子从价带中获得电子,称之为受主杂质原子;
——受主杂质原子在价带上产生空穴,但能不在导带中产生电子;我们称这种类型半导体为P型半导体(P表示产生带正电的空穴)。

3. 本征半导体费米能级:上面已分析本征半导体的费米能级位于禁带中央附近;由于本征半导体电子浓度与空穴浓度相等,假设电子和空穴有效质量相等(其实空穴有效质量略大于电子质量),则本征半导体费米能级位于禁带中央(由理论计算所得)。

4. P/N型半导体费米能级:在室温状态下,施主能级基本处于完全电离状态,对于典型的掺杂(10¹⁶ cm⁻³)来说,强电离区内几乎所有施主杂质原子都向导带贡献了一个电子;受主原子也基本处于完全电离状态,即受主原子都从价带获得一个电子,从而每个受主原子都会在价带上产生一个空穴。如下图Efi为本征半导体费米能级,Ef为掺杂后半导体费米能级。N型半导体随着掺杂浓度增加费米能级越靠近导带底,P型半导体随着掺杂浓度增加费米能级越靠近价带顶。

5. 费米能级表征了半导体中自由电子/空穴的浓度比例,它会随着掺入杂质原子而改变,所以不同P/N型半导体的自由电子与空穴的浓度也不同;假设P/N型半导体自由电子浓度n0,和空穴浓度p0,那么在热平衡状态下n0*p0 = ni²,是一个常数;本征半导体的电子和空穴浓度随着掺杂而改变,但是本征浓度ni可以看做半导体材料的一个参数(保持不变);

6. 本征载流子浓度是一个温度强相关函数,随着温度的增加产生出了额外的电子-空穴对;费米能级随着电子-空穴浓度比例的变化而发生变化。

5,PN结-费米能级

一个完整半导体材料:一部分掺入受主杂质原子形成P区,相邻的另一部分掺入施主杂质形成N区,分割成P区与N区的交界面称为冶金结;起初在冶金结所处的位置,电子和空穴都有一个很大的浓度梯度,两边载流子:N区的“自由电子”和P区的“空穴”分别向对端扩散,随着N区自由电子向P区扩散,带正电的施主离子被留在了N区,同时随着P区的空穴向N区扩散,带负电的受主离子留在了P区,从而在冶金结附近感生出了一个内建电场,方向是由N区指向P区;这两个带电区域就是:空间电荷区,又称为耗尽区。这是以电子“扩散”的理论来解释PN结的形成,那么如果用费米能级怎么来理解PN结呢?

  1. 假设PN结两端没有外加电压偏置,那么PN结处于热平衡状态:整个半导体费米能级处处相等(如果费米能级不相等,PN结两边必然存在着能量的差异,将导致电子和空穴向着各自能量更低的方向转移(原理同热力学第二定律),直到费米能级平衡,能量差异消失:电子和空穴的分布也即趋于稳定),且是一个恒定值;
    ——由于P区和N区之间导带和价带相对位置会随费米能级的变化而变化,所以空间电荷区所在位置的导带和价带发生弯曲,如下图所示;
  2. 此时N区导带内的“自由电子”在试图进入P区导带时遇到了一个势垒:内建电势差eVbi;该内建电势差维持了N区多子(自由电子)和P区少子(自由电子)之间以及P区多子(空穴)与N区少子(空穴)之间的平衡。eVbi维持了平衡状态,因此它在半导体内部不产生电流。

3. 若在P区和N区之间增加一个电压,那么PN结就不能再处在热平衡状态(热平衡状态不再满足);
1, PN区外加反向偏压时:N区的费米能级要低于P区费米能级的位置,两者费米能级的差值刚好等于外加电压值(VR)*电子电量e;总电势差eVtotal=VR+Vbi。增加了的势垒高度继续阻止电子与空穴的流动,因此PN结内基本没有电荷(多子)的流动;
2, PN区外加正向偏压时:P区费米能级要低于N区费米能级的位置,总势垒高度下降了:eVtotal=Vbi-VR。降低了的势垒高度意味着空间电荷区的电场随之减弱,电场减弱则意味着原先扩散电流与漂移电流平衡被打破,电子和空穴不再分别滞留在N区和P区,于是就有由P区经空间电荷区到N区的“扩散空穴电流”,同理有由N区经空间电荷区到P区的“扩散电子电流”。

4. 热平衡状态下PN结导带能量图如下图所示:导带内N区电子数量远大于P区,内建电场阻止了N区自由电子向P区流动,即:内建电势差维持了PN结两侧各区域载流子之间的分布平衡;

5. PN结反偏产生电流:对于反偏PN结,一般认为在空间电荷区内不存在可移动的电子和空穴,但实际上在反偏电压下,空间电荷区内产生了自由电子-空穴对;这些自由电子与空穴试图重新建立热平衡,而过剩自由电子与空穴的复合过程就是重新建立热平衡的过程;这些自由电子和空穴一旦产生,就被电场扫出空间电荷区。由空间荷区自由电子和空穴移动所产生的电流,就是PN结反向电流。理想反向饱和电流密度与反向偏压无关,但实际反偏电流却跟空间电荷区宽度(反向偏压)有关,所以反偏电流密度不再与反偏电压无关。

6. PN结正偏电流,PN结总正偏电流密度是:复合电流密度和理想扩散电流密度之和; 如图为对数坐标上的复合电流和理想扩散电流,两条曲线的斜率不同;电流密度较低时(小注入)复合电流占主导,而电流密度较高(大注入)时,扩散电流占主导地位(电导调制作用)。


1, PN结正偏复合电流:当PN结外加正偏电压时,自由电子和空穴穿过空间电荷区注入到相应的区域,空间电荷区没有过剩载流子,因此自由电子和空穴在穿越空间电荷区时有部分载流子会发生复合,而并不成为少子分布的一部分;


2, 理想扩散电流密度:如下图显示为电中性N区内的少子(空穴)的浓度,该少子分布形成了PN结的理想扩散电流密度,且它是外加电压与少子(空穴)扩散长度的函数;

7. 反向PN结击穿:对于理想PN结反向偏压,会在PN结内形成一股很小的反偏电流,但是反偏电压不能无限制地增加;在特定条件下反偏电流会快速增大;发生该现象时的电压为击穿电压;PN结击穿的物理机制有两种:齐纳击穿和雪崩击穿。

1, 齐纳击穿:重掺杂的PN结由于隧穿机制而发生齐纳击穿;在重掺杂PN结内,反偏条件下PN结两侧的导带和价带离得非常近,以至于电子可以由P区的价带直接隧穿到N区的导带;(稳压二极管掺杂浓度要高,空间电荷区宽度很小,电场强度很大;半导体与金属接触的欧姆电阻,其中一种方式就是隧穿)

2, 雪崩击穿:由于电场作用,当电子穿越空间电荷区时能量会增加,当增加到一定程度并与耗尽区原子内的电子发生碰撞时,便会产生新的自由电子-空穴对;新的自由电子又会撞击其它原子内的电子,于是发生了雪崩效应。由于雪崩效应,电子电流会随着距离的增加而增大。(TVS管掺杂浓度要低,空间电荷区宽度要大)


写在最后

PN结是半导体器件的基石,所有半导体器件复杂的特性,都可以基于PN结推导出来。说实话,关于PN结本章内容只描述了其皮毛,有非常多的理论计算和推导已被我省略,不是故意省略,而是我的确没看懂,哈哈。有兴趣的同学们可以学习《半导体材料》相关书籍。

那哪些内容是作为硬件工程师需要去深入理解的呢,我想还是需要从PN结的特性出发,来理解器件会的特性:

  1. 理解PN结的正向导通,反向截止,反向击穿等特性原理;
  2. 理解载流子导电的行为模型;
  3. 理解由于PN结特性导致的器件参数的真正意义。

本章部分相关内容和图片参考自:唐纳德.A.尼曼-《半导体物理与器件》;知乎-木旦文《二极管5:PN结原理漫谈》;以及其它网络相关技术分享文章。。

 

 

二极管1:PN结背后的力量

(五)木旦文

理论物理专业,核聚变实验2年,射频开发12年

​关注他

174 人赞同了该文章

目录:

一、PN结之可靠,源自何方?

二、马德堡半球试验,激发灵感;

三、PN结中,也有「真空泵」;

四、PN结中,也有「大气压」;

五、伟力的对手,也是伟力。

------------------------

正文:

整个半导体世界的物理基石:PN结,一个看起来有些脆弱的结构,真有那么坚实,能担此重任?

一、PN结之可靠,源自何方?

先看看实际的应用情况,以要求比较苛刻的车规级芯片为例,要求的故障率为十亿分之个位数,这个听起来很夸张,暂且保守一些,放宽到百万分之一,比较靠谱,这也相当列害了。

并且,针对故障的芯片,大型公司有专门的岗位,做器件失效分析,借助X光、各种显微镜等。结论往往是,芯片使用不当或制造工艺缺陷,而非物理机制本身。

从实际使用结果反推,PN结,在物理上是相当稳定的。

正推呢,直接从原理上分析。反复查阅了大量的半导体教材,木旦也没有找到,有关PN结可靠性的章节或段落。也怀疑过自己,想了不该想的问题,但放弃又有点不舍。

换一个思路, 一个很稳定的状态背后,一定有一个强的力量在支持。PN结背后也应当有。反复梳理PN结的原理,也没感受到。这个问题就这样,在脑中游荡了一年。

二、马德堡半球试验,激发灵感

是的,就是马德堡半球试验,给了木旦灵感,多么的不可思议。

马德堡市长叫格里克,学的是法律专业,爱好却是物理。在统揽全市政务之余,潜心研究真空,著就《论真空》一书,还发明了真空泵。可谓工作与爱好两不误,理论与实践皆精通。自己被大气压所震撼,还不忘与众人一起分享。

分享的方式,竟是一场大型的户外“马戏表演“,结果非常成功,奠定了其世界级的科普实验地位。科普的价值,有时不亚于科学本身!

这16匹马对抗的不是彼此,而是大气压力,因为铜球内部的空气已经抽出来了。这与PN有关系吗?

还真有,PN结中也有「抽真空」的操作,不敢相信

三、PN结中,也有「真空泵」

前提,半导体中得有「气体」。半导体,无论纯净的还是掺杂过的,内部都活动着自由电子与空穴。这些自由载流子,类似于气体分子,也做无规则热运动,可以当做「气体」。

从固体中发现「气体」,把固体中自由电子,当作气体分子来分析,这就是著名的自由电子模型,简单实用。在量子理论横行的2021年,依然有生命力

掺杂前,半导体是本征状态,左右两侧的自由电子浓度是相同的,常温下为1.5×1010��−3。

掺杂:取典型值感受一下,左侧,受主掺杂浓度为 5×1015��−3,则自由电子浓度可简单计算得约为5×104��−3;右侧,施主重掺杂浓度5×1018��−3,则自由电子浓度等于掺杂浓度为5×1018��−3。

抽真空与掺杂,效果相当

掺杂后,以自由电子浓度为例,左侧大大减小,右侧大大增大;左右两侧浓度相差,由相等变为相差14个数量级。所以说,掺杂操作,是半导体中的「真空泵」,「抽」是自由电子。

目前,机械泵能达到的真空度约1Pa,科研中再加上3个大佬级的分子泵、吸附泵、离子泵,能达到10−9 Pa的真空度,与标准大气压105 Pa相比也是14个数量级。这样一比,半导体中的「真空泵」,效果也不差。

四、PN结中,也有「大气压」

扩散之前,半导体中间边界,将承受右边大量自由电子的撞击,宏观上就形成了一股压力,姑且称之为「自由电子气压力」

常温下,空气的浓度约为 4.2×1018��−3 ,与PN结右侧的的自由电子浓度约为 5×1018��−3,是同一个数量级。即自由电子浓度,与空气的浓度,是相当的。

空气与自由电子,都适用于热力学理想气体模型。而理想气体的热动能,除了相同的物理常数外,只与温度有关。即无论粒子轻、重、胖、瘦,在热动能面前,粒粒平等。即当温度相同时,如常温下,一个自由电子热动能,与一个气体分子的是相同的。

部队规模相仿,单兵战斗力也一样。所以,「自由电子气压力」,具有与大气压力可比拟的、强大的力量

(详细的经典热力学分析,以级在量子力学下的正确性检验,见后面的注释)

五、伟力的对手,也是伟力

当扩散开始后,自由电子气体,必定像超级台风一般,闯入左半侧。

不一样的是,「自由电子台风」是带负电的,所到之处由中性变为负电区,身后留下的区域也自然变成正电区,形成一个向左的内建电场。

内建电场对电子的作用力方向是向右的,即自由电子被往回拉。有点像是,自由电子都被绑了一个弹力绳,冲的越多越远,被拽回来的力量就越大。直到,两股力量大小相当,达到动态平衡。此时,内建电场区域,即耗尽层的宽度,增至最大值且保持不变。

能和浓度差压力打个平手,那内建电场的力量也应很大,否则都要怀疑浓度差压力的大小了。

内建电势约0.8伏,很小,但是都落在约3微米的耗尽层上,内建电场的平均值为约 2×105 V/m,很大,将对自由电子产生非常大的牵引力。

很大是多大?

来点感性的体验,以家用空调常用的4 mm2 铜线为例。电场为2.5V/m时,铜导线就融化;为11V/m时,铜导线直接气化;再增加丧心病狂的10000倍,接近内建电场的 1×105 V/m,已经无法用语言描述,铜导线或许,早已成佛成仙!

把铜线当做黑体模型,计算结果表明,在导体中,11V/m就已经是相当大的电场了

所以,「内建电场很大」的描述,是多么地委婉。

有一点需要强调。

浓度差生内建电场。反过来,内建电场,通过遣返自由电子,使较大的浓度差一致保持,使扩散一直持续下去;否则,扩散只能持续一个瞬间,尔后,两侧自由电子浓度变为相同,没有浓度差,也就没有扩散。

所以:浓度差与内建电场,是相互依存的,是为相生;两者又相互对抗,是为相克;相生相克,有点「道」的味道!

全文小结

PN中两个位深藏不露的高手:自由电荷的浓度梯度压力、内建电场的牵引力,都是相当大的力量。

两个力量的对抗与平衡,即强力地推动了PN结的形成,也强力维持着PN结的稳定。

这背后巨大的力量,是PN结的灵魂。将是什么样的灵魂,才能统帅一对如此的力量。

此时,木旦再看芯片,仿佛看到了万马奔腾,尘土飞扬的壮阔景象。

木旦文 2019年寒露 广州

(本文是本人原创,欢迎赞同、收藏、评论、分享;但转载需要本人同意)

注释:

1)经典热力学下的论证:

理想气体的平均热动能是

其中k是波尔茨曼常数,为 1.38×10−23�/� ; T是开尔文温度。
所以,粒子的平均热动能,正比于温度,且只与温度相关,与粒子的质量没有关系。所以,相同温度下,自由电子与空气气体分子,具有相同的平均热动能。两者的质量相差4个数量级,是通过热运动速度相差2个数量级来平衡的。
理想气体的压强公式为

其中,n是气体的浓度, � 是气体的平均热动能。
即,理想气体的压强,只正比于浓度与平均热动能;如果自由电子与空气的浓度基本相当,加之平均热动能相等,那么自由电子产生的压强,与大气压的大小是可比拟的,在一个数量级上。

2)量子力学论证一:

金属热容中自由电子的贡献。
金属导体,通常只有原子总数1%的自由电子可以获得kT的热动能,具体原因是泡利原理与费米分布的要求。其余的自由电子由于能级数量的限制,无法被热激发。所以,电子对金属热容的贡献常温下只有约1%,可忽略不计,这几乎是所有固体物理教材都会论述的内容。比如,基泰尔《固体物理导论》第6.4节。
回到半导体材料上来,即使是重掺杂浓度1018 每立方厘米,自由电荷的数量也只是硅原子浓度的0.01%, 距离量子力学起作用的1%的数量还有2个数量级。即还不需要量子力学出场。

3)量子力学论证二:

简并半导体的概念。
半导体物理中有明确的简并半导体的概念,也是当掺杂浓度搞到重掺杂浓度(常温下一般超过1018 每立方厘米)时,量子力学效应慢慢开始显现,导致电离逐渐不充分。详细的论述见刘树林等《半导体器件物理(第2版)》第1.3节。
再一次显示,常温下,量子力学起作用的条件是,半导体中自由电荷的浓度在数量级上接近原子浓度,越接近,越明显。
所以此处,经典热力学够用,不需要劳驾量子力学。

3)2019年初稿,2021年3月大改。

编辑于 2021-12-03 13:27

 

  • 5
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值