Netrual Network

神经网络

一、神经网络基础

  • 感知机
    • 在n个输入数据,通过权重与各数据之间的计算和,比较激活函数结果,得出输出

    • 应用:很容易解决与、或问题

      • 与或问题:于:所有的输入为1,输出为1.或:只要有一个为1,输出就为1.异或:相同为0,不同为1.
    • 感知机解决分类问题,下图为简单的感知机模型

    • 在这里插入图片描述

    • 单个感知机解决不了的问题,可以增加

    • Rosenblatt在1957年,于Cornell航空实验室所发明的一种人工神经网络

    • 神经网络的发展

      • 定义:在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN)或类神经网络,是一种模仿生物神经网络的结构和功能的计算模型,用于对函数进行估计或近似。
      • 神经网络的种类:
        • 基础神经网络:单层感知机,线性神经网络,BP神经网络,Hopfield网络等
        • 进阶神经网络:玻尔兹曼机,受限玻尔兹曼机,递归神经网络等
        • 深度神经网络:深度置信网络,卷积神经网络,循环神经网络,LSTM网络等
    • 神经网络的特点

      • 输入向量的维度和输入神经元的个数相同
      • 每个连接都有个权值
      • 同一层神经元之间没有连接
      • 由输入层,隐层,输出层组成
      • 第N层与第N-1层的所有神经元连接,也叫全连接
    • 神经网络的组成

      • 结构(Architecture)例如:神经网络中权重,神经元等等
      • 激活函数(Activity Rule)
      • 学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。(反向传播算法)
    • 神经网络API模块

      • 在使用tensorflow时候,tf.nn,tf.layers,tf.contrib模块有很多功能是重复的。
      • 1,tf.nn:提供神经网络相关操作的支持,包括卷积操作(conv)、池化操作(pooling)、归一化、loss、分类操作、embedding、RNN、Evaluation。
      • 2,tf.layers:主要提供的高层的神经网络,主要和卷积相关的,对tf.nn的进一步封装。
      • tf.contrib:tf.contrib.layers提供能够将计算图中的网络层、正则化、摘要操作、是构建计算图的高级操作,但是tf.contrib包不稳定以及一些实验代码。
    • 浅层人工神经网络模型

      • SoftMax回归函数
        -在这里插入图片描述

      • 交叉熵损失函数

      • 在这里插入图片描述

      • 1,全连接-从输入直接到输出

      • 特征加权

        • tf.matmul(a,b,name=None) + bias
          • return:全连接结果,供交叉损失运算
          • 不需要激活函数(因为是最后的输出)
      • 2,SoftMax计算、交叉熵

        • tf.nn.softmax_cross_entropy_with_logits(labels=None,logits=None,name=None)----计算logits和labels之间的交叉损失熵
        • labels:标签值(真实值)
        • logits:样本加权之后的值
        • return:返回损失值列表
      • 3,损失值列表平均值计算

        • tf.reduce_mean(input_tensor)
        • 计算张量的尺寸的元素平均值
      • 4,其它方法–损失下降API

        • tf.train.GradientDescentOptimizer(learning_rate)—梯度下降优化
        • learning_rate:学习率,一般为
        • minimize(loss):最小化损失
        • return:梯度下降op
      • 5,获取数据

        • from tensorflow.examples.tutorials.mnist import input_data
        • mnist = input_data.read_data_sets(FLAGS.data_dir,one_hot=True)
      • 6,准确性计算

        • equal_list = tf.equal(tf.argmax(y,1),tf.argmax(y_label,1))
        • accuracy = tf.reduce_mean(tf.cast(equal_list,tf.float32))
      • Mnist数据集神经网络实现流程

        • 1,准备数据
        • 2,全连接结果计算
        • 3,损失优化
        • 4,模型评估(计算准确性)

二、卷积神经网络(CNN)

  • 神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。二卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)

    • 卷积层:通过在原始图像上平移来提取特征
    • 池化层:通过特征后稀疏参数来减少学习的参数,降低网络的复杂度,(最大池化和平均池化)
  • 卷积神经网络的结构

    • 1,卷积层过滤器
      • 个数
      • 大小(11,33,5*5)
      • 步长
      • 零填充
      • 卷积层输出深度、输出宽度
        • 深度由过滤器个数决定
        • 输出宽度
    • 2,激活函数
    • 在这里插入图片描述
    • 3,池化层
    • 4,全连接层
  • 注:在大型网络当中会有一个droupout(减少过拟合)

    • 卷积层过滤器的参数

      • 输入体积大小H1W1D1
      • 四个超参数:
        • Filter数量K
        • Filter大小F
        • 步长S
        • 零填充大小P
      • 输出体积大小H2W2D2
        • H2 = (H1-F+2P)/ S + 1
        • W2 = (W1-F+2P)/ S + 1
        • D2 = K
    • 卷积层的零填充

      • 卷积核在提取特征映射时的动作称之为padding(零填充),由于移动步长不一定能整出整张图的像素宽度。其中有两种方式,SAME和VALID
        • 1,SAME:越过边缘取样,取样的面积和输入图像的像素宽度一致。
        • 2,VALID:不越过边缘取样,取样的面积小于输入人的图像的像素宽度
    • 卷积网络API介绍

    • 卷积层:

      • tf.nn.conv2d(input,filter,strides=,padding=,name=None)
      • 计算给定4-D input和filter张量的2维卷积
        • input:给定的输入张量,具有[batch,height,width,channel],类型为float32,64
        • filter:指定过滤器的大小,[filter_height,filter_width,in_channels,out_channels]
        • strides:strides = [1,stride,stride,1],步长
        • padding:“SAME”,“VALID”,使用的填充算法的类型,使用"SAME".其中"VALID"表示滑动超出部分舍弃,"SAME"表示填充,使得变化后height,width一样大。
    • 激活函数:

    • tf.nn.relu(features,name=None)

      • features:卷积后加上偏置的结果
      • return:结果
    • 池化层(pooling)计算

      • Pooling层主要的作用是特征提取,通过去掉Feature Map中不重要的样本,进一步减少参数数量。Pooling的方法很多,最常用的是Max
      • Pooling。2*2,步长2
      • 在这里插入图片描述
    • 池化API:

    • tf.nn.max_pool(value,ksize=,strides=,padding=,name=None)—输入上执行最大池数

      • value:4-D Tensor形状[batch,height,width,channels]
      • ksize:池化窗口大小,[1,ksize,ksize,1]
      • strides:步长大小,[1,strides,strides,1]
      • padding:“SAME”,“VALID”,使用的填充算法的类型,使用"SAME"
    • Full Connected层

      • 分析:前面的卷积和池化相当于做特征工程,后面的全连接相当于做特征加权。最后的全连接层在整个卷积神经网络中起到“分类器”的作用。
    • 卷积网络分析

    • 在这里插入图片描述

三、分布式TensorFlow

  • 分布式API

    • 1,创建一个tf.train.ClusterSpec,用于对集群中的所有任务进行描述,该描述内容对所有任务应该是相同的。
    • 2,创建一个tf.train.Server,用于创建一个任务(ps,worker),并运行相应作业上的计算任务。
  • 1,创建集群

  • 2,创建服务

    • tf.train.Server(server_or_cluster_def,job_name=None,task_index=None,protocol=None,config=None,start=True)
      • 创建服务(ps,worker)
      • server_or_cluster_def:集群描述
      • job_name:任务类型名称
      • task_index:任务数
      • attribute:target
        • 返回tf.Session连接到此服务器的目标
      • method:join()
        • 参数服务器端,直到服务器等待接受参数任务关闭
  • 3,工作节点指定设备运行

    • tf.device(device_name_or_function)
    • 选择指定设备或者设备参数
    • if device_name:
      • 指定设备
      • 例如:"/job:worker/task:0/cpu:0"
    • if function:
      • tf.train.replica_device_setter(worker_device=worker_device,cluster=cluster)
      • 作用:通过此函数协调不同设备上的初始化操作
      • worker_device:为指定设备,"/job:worker/task:0/cpu:0"or"/job:worker/task:0/gpu:0"
      • cluster:集群描述对象
    • 注:使用with tf.device(),使不同工作节点工作在不同的设备上
  • 4,分布式会话API

    • tf.train.MonitoredTrainingSession(master="",is_chief=True,checkpoint_dir=None,hooks=None,save_checkpoint_secs=600,save_summaries_steps=USE_DEFAULT,save_summaries_secs=USE_DEFAULT,config=None)
    • 分布式会话函数
    • master:指定运行会话协议ip和端口(用于分布式)
      • “grpc://192.168.0.1:2000”
    • is_chief是否为主worker(用于分布式)
      • 如果为True,它将负责初始化和恢复基础的Tensorflow会话。如果为False,它将等待一位负责人初始化或恢复Tensorflow会话
    • checkpoint_dir:检查点文件目录,同时也是events目录
    • config:会话运行的配置项,tf.ConfigProto(log_device_placement=True)
    • hooks:可选SessionRunHook对象列表
    • should_stop():是否异常停止
    • run():跟session一样可以运行op
  • 5,常用钩子

    • tf.train_StopAtStepHook(last_step=5000)
    • 指定执行的训练轮数也就是max_step,超过了就会抛出异常
    • tf.train.NanTensorHook(loss)
    • 判断指定Tensor是否为NaN,为NaN则结束
    • 注:在使用钩子的时候需要定义一个全局步数:global_step=tf.contrib.framework.get_or_create_global_step()

code_1


import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
from tensorflow.examples.tutorials.mnist import input_data

def full_connected():

    # 获取真实的数据
    mnist = input_data.read_data_sets("./data/mnist/input_data/",one_hot=True)

    # 1,建立数据的占位符  x [None,784]  y_true [None,10]
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32,[None,784])

        y_true = tf.placeholder(tf.int32,[None,10])

    # 2,建立一个全连接层的神经网络 w [784,10]  b [10]
    with tf.variable_scope("fc_model"):
        # 随机初始化权重和偏置
        weight = tf.Variable(tf.random_normal([784,10],mean=0.0,stddev=1.0),name="w")

        bias = tf.Variable(tf.constant(0.0,shape=[10]))

        # 预测None个样本的输出结果matrix[None,784]*[784,10] + [10] = [None,10]
        y_predict = tf.matmul(x,weight) + bias

    # 3,求出所有样本的损失,然后求平均值
    with tf.variable_scope("soft_cross"):
        #  计算交叉熵损失API
        #  求平均交叉熵损失
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=y_predict))

    # 4,梯度下降求出损失
    with tf.variable_scope("optimizer"):

        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    # 5,计算准确率
    with tf.variable_scope("acc"):

        equal_list = tf.equal(tf.argmax(y_true,1),tf.argmax(y_predict,1))

        accuracy = tf.reduce_mean(tf.cast(equal_list,tf.float32))

    # 收集变量,单个数字值收集
    tf.summary.scalar("losses",loss)
    tf.summary.scalar("acc",accuracy)

    # 高纬度变量收集
    tf.summary.histogram("weightes",weight)
    tf.summary.histogram("biases",bias)

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 定义一个合并变量的op
    merged = tf.summary.merge_all()

    # 6,开启会话去训练
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)

        # 建立events文件,然后写入
        filewriter = tf.summary.FileWriter("./tmp/summary/test/",graph=sess.graph)

        # 迭代步数去训练,更新参数预测
        for i in range(5000):

            # 取出真实存在的特征值和目标值
            mnist_x,mnist_y = mnist.train.next_batch(100)

            # 运行train_op训练
            sess.run(train_op,feed_dict={x:mnist_x,y_true:mnist_y})

            # 写入每步训练的值
            summary = sess.run(merged,feed_dict={x:mnist_x,y_true:mnist_y})

            filewriter.add_summary(summary,i)

            print("训练第%d步,准确率为%f" % (i,sess.run(accuracy,feed_dict={x:mnist_x,y_true:mnist_y})))


    return None


if __name__ == '__main__':
    full_connected()


code_2

import tensorflow as tf
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
from tensorflow.examples.tutorials.mnist import input_data

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("is_train", 1, "指定程序是预测还是训练")


def full_connected():
    # 获取真实的数据
    mnist = input_data.read_data_sets("./data/mnist/input_data/", one_hot=True)

    # 1,建立数据的占位符  x [None,784]  y_true [None,10]
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32, [None, 784])

        y_true = tf.placeholder(tf.int32, [None, 10])

    # 2,建立一个全连接层的神经网络 w [784,10]  b [10]
    with tf.variable_scope("fc_model"):
        # 随机初始化权重和偏置
        weight = tf.Variable(tf.random_normal([784, 10], mean=0.0, stddev=1.0), name="w")

        bias = tf.Variable(tf.constant(0.0, shape=[10]))

        # 预测None个样本的输出结果matrix[None,784]*[784,10] + [10] = [None,10]
        y_predict = tf.matmul(x, weight) + bias

    # 3,求出所有样本的损失,然后求平均值
    with tf.variable_scope("soft_cross"):
        #  计算交叉熵损失API
        #  求平均交叉熵损失
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))

    # 4,梯度下降求出损失
    with tf.variable_scope("optimizer"):

        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    # 5,计算准确率
    with tf.variable_scope("acc"):

        equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))

        accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

    # 收集变量,单个数字值收集
    tf.summary.scalar("losses", loss)
    tf.summary.scalar("acc", accuracy)

    # 高纬度变量收集
    tf.summary.histogram("weightes", weight)
    tf.summary.histogram("biases", bias)

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 定义一个合并变量的op
    merged = tf.summary.merge_all()

    # 创建一个saver
    saver = tf.train.Saver()

    # 6,开启会话去训练
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)

        # 建立events文件,然后写入
        filewriter = tf.summary.FileWriter("./tmp/summary/test/", graph=sess.graph)

        if FLAGS.is_train == 1:
            # 迭代步数去训练,更新参数预测
            for i in range(5000):
                # 取出真实存在的特征值和目标值
                mnist_x, mnist_y = mnist.train.next_batch(100)

                # 运行train_op训练
                sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})

                # 写入每步训练的值
                summary = sess.run(merged, feed_dict={x: mnist_x, y_true: mnist_y})

                filewriter.add_summary(summary, i)

                print("训练第%d步,准确率为%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))

            # 保存模型
            saver.save(sess, "./tmp/ckpt/fc_model")
        else:
            # 加载模型
            saver.restore(sess, "./tmp/ckpt/fc_model")

            # 如果是0,做出预测
            for i in range(100):
                # 每次测试一张图片
                x_test, y_test = mnist.test.next_batch(1)

                print("第%d张图片,手写数字目标是:%d,预测结果是:%d" % (
                    i,
                    tf.argmax(y_test, 1).eval(),
                    tf.argmax(sess.run(y_predict, feed_dict={x: x_test, y_true: y_test}), 1).eval()
                ))

    return None


# 定义一个初始化权重的函数
def weight_variables(shape):
    w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=1.0))
    return w


# 定义一个初始化偏置的函数
def bias_variables(shape):
    b = tf.Variable(tf.constant(0.0, shape=shape))
    return b


def model():
    """
    自定义的卷积模型
    :return:
    """
    # 1,准备数据的占位符 x [None,784] y_true [None,10]
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32, [None, 784])

        y_true = tf.placeholder(tf.int32, [None, 10])

    # 2,一卷积层,卷积:5*5*1,32个,strides=1、激活:tf.nn.relu、池化
    with tf.variable_scope("conv1"):
        # 定义初始化权重,偏置[32]
        w_conv1 = weight_variables([5, 5, 1, 32])

        b_conv1 = bias_variables([32])
        # 对x进行形状的改变[None,784]---->[None,28,28,1]
        x_reshape = tf.reshape(x, [-1, 28, 28, 1])

        # [None,28,28,1]----->[None,28,28,32]
        x_relu1 = tf.nn.relu(tf.nn.conv2d(x_reshape, w_conv1, strides=[1, 1, 1, 1], padding="SAME") + b_conv1)

        # 池化 2*2,strides:2,[None,28,28,32]------>[None,14,14,32]
        x_pool1 = tf.nn.max_pool(x_relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

    # 3,二卷积层,卷积:5*5*32,64个filter,strides=1、激活:tf.nn.relu、池化
    with tf.variable_scope("conv2"):
        # 定义初始化权重,权重:[5,5,32,64],偏置[64]
        w_conv2 = weight_variables([5, 5, 32, 64])

        b_conv2 = bias_variables([64])

        # 卷积,激活,池化计算
        # [None,14,14,32]------>[None,14,14,64]
        x_relu2 = tf.nn.relu(tf.nn.conv2d(x_pool1, w_conv2, strides=[1, 1, 1, 1], padding="SAME") + b_conv2)

        # 池化 2*2,strides 2,[None,14,14,64]------>[None,7,7,64]
        x_pool2 = tf.nn.max_pool(x_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

    # 4,全连接层 [None,7,7,64]----->[None,7*7*64]*[7*7*64,10] + [10] = [None,10]
    with tf.variable_scope("conv2"):
        # 随机初始化权重和偏置
        w_fc = weight_variables([7 * 7 * 64, 10])

        b_fc = bias_variables([10])

        # 修改形状[None,7,7,64]------>[None,7*7*64]
        x_fc_reshape = tf.reshape(x_pool2, [-1, 7 * 7 * 64])

        # 进行矩阵运算得出每个样本的10个结果
        y_predict = tf.matmul(x_fc_reshape, w_fc) + b_fc

    return x, y_true, y_predict


def conv_fc():
    # 获取真实的数据
    mnist = input_data.read_data_sets("./data/mnist/input_data/", one_hot=True)

    # 定义模型,得出输出
    x, y_true, y_predict = model()

    # 进行交叉熵损失计算
    # 3,求出所有样本的损失,然后求平均值
    with tf.variable_scope("soft_cross"):
        #  计算交叉熵损失API
        #  求平均交叉熵损失
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))

    # 4,梯度下降求出损失
    with tf.variable_scope("optimizer"):
        train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)

    # 5,计算准确率
    with tf.variable_scope("acc"):
        equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))

        accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 开启会话
    with tf.Session() as sess:
        sess.run(init_op)

        # 循环去训练
        for i in range(1000):
            # 取出真实存在的特征值和目标值
            mnist_x, mnist_y = mnist.train.next_batch(50)

            # 运行train_op训练
            sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})

            print("训练第%d步,准确率为%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))

    return None


if __name__ == '__main__':
    # full_connected()
    conv_fc()

验证码识别

import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string("captcha_dir", "./tfrecords/captcha.tfrecords", "验证码数据的路径")
tf.app.flags.DEFINE_integer("batch_size", 100, "每批次训练的样本数")
tf.app.flags.DEFINE_integer("label_num", 4, "每个样本的目标值数量")
tf.app.flags.DEFINE_integer("letter_num", 26, "每个目标值取的字母的可能心个数")


# 定义一个初始化权重的函数
def weight_variables(shape):
    w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=1.0))
    return w


# 定义一个初始化偏置的函数
def bias_variables(shape):
    b = tf.Variable(tf.constant(0.0, shape=shape))
    return b


def read_and_decode():
    """
    读取验证码数据API
    :return: image_batch, label_batch
    """
    # 1、构建文件队列
    file_queue = tf.train.string_input_producer([FLAGS.captcha_dir])

    # 2、构建阅读器,读取文件内容,默认一个样本
    reader = tf.TFRecordReader()

    # 读取内容
    key, value = reader.read(file_queue)

    # tfrecords格式example,需要解析
    features = tf.parse_single_example(value, features={
        "image": tf.FixedLenFeature([], tf.string),
        "label": tf.FixedLenFeature([], tf.string),
    })

    # 解码内容,字符串内容
    # 1、先解析图片的特征值
    image = tf.decode_raw(features["image"], tf.uint8)
    # 1、先解析图片的目标值
    label = tf.decode_raw(features["label"], tf.uint8)

    # print(image, label)

    # 改变形状
    image_reshape = tf.reshape(image, [20, 80, 3])

    label_reshape = tf.reshape(label, [4])

    print(image_reshape, label_reshape)

    # 进行批处理,每批次读取的样本数 100, 也就是每次训练时候的样本
    image_batch, label_btach = tf.train.batch([image_reshape, label_reshape], batch_size=FLAGS.batch_size, num_threads=1, capacity=FLAGS.batch_size)

    print(image_batch, label_btach)
    return image_batch, label_btach


def fc_model(image):
    """
    进行预测结果
    :param image: 100图片特征值[100, 20, 80, 3]
    :return: y_predict预测值[100, 4 * 26]
    """
    with tf.variable_scope("model"):
        # 将图片数据形状转换成二维的形状
        image_reshape = tf.reshape(image, [-1, 20 * 80 * 3])

        # 1、随机初始化权重偏置
        # matrix[100, 20 * 80 * 3] * [20 * 80 * 3, 4 * 26] + [104] = [100, 4 * 26]
        weights = weight_variables([20 * 80 * 3, 4 * 26])
        bias = bias_variables([4 * 26])

        # 进行全连接层计算[100, 4 * 26]
        y_predict = tf.matmul(tf.cast(image_reshape, tf.float32), weights) + bias

    return y_predict


def predict_to_onehot(label):
    """
    将读取文件当中的目标值转换成one-hot编码
    :param label: [100, 4]      [[13, 25, 15, 15], [19, 23, 20, 16]......]
    :return: one-hot
    """
    # 进行one_hot编码转换,提供给交叉熵损失计算,准确率计算[100, 4, 26]
    label_onehot = tf.one_hot(label, depth=FLAGS.letter_num, on_value=1.0, axis=2)

    print(label_onehot)

    return label_onehot


def captcharec():
    """
    验证码识别程序
    :return:
    """
    # 1、读取验证码的数据文件 label_btch [100 ,4]
    image_batch, label_batch = read_and_decode()

    # 2、通过输入图片特征数据,建立模型,得出预测结果
    # 一层,全连接神经网络进行预测
    # matrix [100, 20 * 80 * 3] * [20 * 80 * 3, 4 * 26] + [104] = [100, 4 * 26]
    y_predict = fc_model(image_batch)

    #  [100, 4 * 26]
    print(y_predict)

    # 3、先把目标值转换成one-hot编码 [100, 4, 26]
    y_true = predict_to_onehot(label_batch)

    # 4、softmax计算, 交叉熵损失计算
    with tf.variable_scope("soft_cross"):
        # 求平均交叉熵损失 ,y_true [100, 4, 26]--->[100, 4*26]
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
            labels=tf.reshape(y_true, [FLAGS.batch_size, FLAGS.label_num * FLAGS.letter_num]),
            logits=y_predict))
    # 5、梯度下降优化损失
    with tf.variable_scope("optimizer"):

        train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)

    # 6、求出样本的每批次预测的准确率是多少 三维比较
    with tf.variable_scope("acc"):

        # 比较每个预测值和目标值是否位置(4)一样    y_predict [100, 4 * 26]---->[100, 4, 26]
        equal_list = tf.equal(tf.argmax(y_true, 2), tf.argmax(tf.reshape(y_predict, [FLAGS.batch_size, FLAGS.label_num, FLAGS.letter_num]), 2))

        # equal_list  100个样本   [1, 0, 1, 0, 1, 1,..........]
        accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 开启会话训练
    with tf.Session() as sess:
        sess.run(init_op)

        # 定义线程协调器和开启线程(有数据在文件当中读取提供给模型)
        coord = tf.train.Coordinator()

        # 开启线程去运行读取文件操作
        threads = tf.train.start_queue_runners(sess, coord=coord)

        # 训练识别程序
        for i in range(5000):

            sess.run(train_op)

            print("第%d批次的准确率为:%f" % (i, accuracy.eval()))

        # 回收线程
        coord.request_stop()

        coord.join(threads)

    return None


if __name__ == "__main__":
    captcharec()

以上所需数据请前往https://github.com/MapleStoryBoy/spider/tree/master/deeplearn

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值