MATLAB神经网络工具箱的使用——Neural Net Fitting app

一、欢迎界面

在这里插入图片描述

二、输入输出数据选择

在这里插入图片描述
在这里插入图片描述

三、数据集分类

在这里插入图片描述

四、神经网络结构设置

在这里插入图片描述

五、神经网络训练函数选择及训练

在这里插入图片描述
其中,训练算法有LM算法、贝叶斯正则化法、量化共轭梯度法。

以下是使用MATLAB神经网络工具箱搭建一个BP神经网络的基本步骤: 1. 数据准备:首先需要准备一组有标签的数据集,其中包括输入和输出参数。在这个问题中,输入参数应该是干扰信号的特征参数,输出参数应该是干扰信号的识别结果。 2. 创建神经网络:打开MATLAB,点击菜单栏上的“APPS”按钮,选择“Neural Network Toolbox”,然后选择“Neural Network Fitting App”。在弹出的窗口中,选择“New Fit”并选择“Backpropagation”作为神经网络类型。 3. 指定网络结构:在“Network Structure”选项卡中,指定神经网络的层数以及每层的神经元数量。对于这个问题,我们可以选择一个包含一个隐层的神经网络,其中隐层中的神经元数量可以根据实际情况进行调整。 4. 指定训练参数:在“Training”选项卡中,指定训练算法、学习率、最大训练次数等参数。对于这个问题,我们可以选择使用默认的训练算法和学习率,并将最大训练次数设置为足够大的值,以便训练得到更好的结果。 5. 导入数据:在“Data”选项卡中,导入之前准备好的数据集,并指定输入和输出参数。 6. 开始训练:在“Training”选项卡中,点击“Train”按钮开始训练神经网络。训练过程中,可以观察到训练误差的变化情况。 7. 测试和评估:在“Testing”选项卡中,使用测试数据集对训练好的神经网络进行测试,并计算出识别准确率等性能指标。 需要注意的是,神经网络的性能和训练效果与数据集的质量和数量密切相关。因此,在实际应用中,需要选择恰当的特征参数,并收集足够的干扰信号数据进行训练和测试。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值