基本模型机_基于支持向量机的隧道衬砌空洞机器识别方法(原文见2020年第57卷第2期)...

本文提出了一种基于支持向量机(SVM)的隧道衬砌空洞探地雷达图像机器识别方法。通过图像预处理、特征提取和SVM识别,能准确识别空洞并估计其位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f5b13023a270937223a0e904175ce0cf.gif

2388b6263cca562224f00620fe4cf801.png

点击上方蓝字关注我们

f5b13023a270937223a0e904175ce0cf.gif

1f0a19d8bd4123577fb2d2f8c0083c73.png

(原文见2020年第57卷第2期)

abcfc286b84135f595d200843e0b7e78.png

基于支持向量机的隧道衬砌空洞机器识别方法

覃   晖1   唐   玉2   谢雄耀3,4   王峥峥1

(1 大连理工大学土木工程学院,大连 116024;2 大连理工大学水利工程学院,大连 116024;

3 同济大学岩土及地下工程教育部重点实验室,上海 200092;4 同济大学地下建筑与工程系,上海 200092)

摘  要    探地雷达是检测隧道衬砌空洞最为有效的方法之一,但检测数据的解析始终是限制其广泛应用的关键。基于支持向量机的基本理论,文章建立了一套隧道衬砌空洞探地雷达图像的机器识别方法,该方法包括图像预处理、特征提取和支持向量机识别三个步骤。首先,探地雷达图像需经过零时修正、滤波、偏移、增益等预处理以提高信噪比;其次,对图像的时域信号进行分段,在分段信号上提取方差、标准绝对偏差和四阶矩三个统计量作为图像特征;最后,利用已知数据对支持向量机模型进行训练,并用数值模拟和模型试验数据对训练好的支持向量机模型进行测试。结果表明,该方法不仅能够准确识别隧道衬砌和围岩内的空洞,还可以对空洞埋深及横向分布范围做出较准确的判断。

关键词    隧道   空洞   探地雷达   支持向量机   机器识别

中图分类号:U457+.2     文献标识码:A

Machine Recognition Method of Tunnel Lining Voids Based on SVM Algorithm

QIN Hui1   TANG Yu2   XIE Xiongyao3, 4   WANG Zhengzheng1

(1 School of Civil Engineering,Dalian University of Technology,Dalian 116024; 2 School of Hydraulic Engineering,Dalian University of Technology,Dalian 116024; 3 Key Laboratory of Geotechnical and Underground Engineering,Tongji University,Shanghai 200092; 4 Department of Geotechnical Engineering,Tongji University,Shanghai 200092)

Abstract   Ground penetrating radar (GPR) is one of the most effective detection methods for tunnel lining voids. However, the difficulties in data explanation are always the key to restrict its wide application. Based on support vector machine (SVM) algorithm, a set of machine recognition method of GPR image for tunnel lining voids is established. This method includes pre-processing of GPR data, feature extraction and SVM recognition. Firstly, the GPR image needs to be preprocessed by time-zero correction, filtering, migration and gain and so on to improve the signal-noise ratio (SNR). Secondly, each time-domain trace of GPR image is segmented and three statistics, namely variance, mean absolute deviation and fourth-order moment are extracted from the segmented signal as image features. Finally, the SVM model is trained by using the known data, and the data from a numerical simulation and a model experiment are used to test the trained SVM model. The results show that the proposed method can not only accurately recognize all voids in the tunnel lining and surrounding rock, but also accurately estimate the cover depths and lateral ranges of the voids. Ground penetrating radar (GPR) is one of the most effective detection methods for tunnel lining voids. However, the difficulties in data explanation are always the key to restrict its wide application. Based on support vector machine (SVM) algorithm, a set of machine recognition method of GPR image for tunnel lining voids is established. This method includes pre-processing of GPR data, feature extraction and SVM recognition. Firstly, the GPR image needs to be preprocessed by time-zero correction, filtering, migration and gain and so on to improve the signal-noise ratio (SNR). Secondly, each time-domain trace of GPR image is segmented and three statistics, namely variance, mean absolute deviation and fourth-order moment are extracted from the segmented signal as image features. Finally, the SVM model is trained by using the known data, and the data from a numerical simulation and a model experiment are used to test the trained SVM model. The results show that the proposed method can not only accurately recognize all voids in the tunnel lining and surrounding rock, but also accurately estimate the cover depths and lateral ranges of the voids.

Keywords   Tunnel;Void;Ground penetrating radar (GPR);Support vector machine (SVM);Machine recognition

a492daa31684111d4f30e2d56ede0281.png 9e7e7fd51c1dd33f3d1fa571ce6babfc.gif
STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于工业控制、物联网设备等领域。本资料包主要提供了STM32F103在实现RS485通信及Modbus RTU协议的主机和从机模式下的源代码实例,帮助开发者快速理解和应用这一通讯技术。 RS485是一种物理层通信标准,用于构建多点数据通信网络,具有传输距离远、抗干扰能力强的特点。它采用差分信号传输方式,可以实现双向通信,适合于长距离的工业环境。在RS485网络中,通常有一个主机(Master)和一个或多个从机(Slave),主机负责发起通信,从机响应主机的请求。 Modbus RTU(Remote Terminal Unit)是一种常用的过程控制工业通信协议,基于ASCII或RTU(远程终端单元)报文格式,常用于PLC(可编程逻辑控制器)和嵌入式系统之间的通信。Modbus RTU使用串行通信接口,如RS485,以减少布线成本和提高通信效率。 在STM32F103上实现RS485 Modbus RTU通信,首先需要配置GPIO口作为RS485的硬件接口,包括数据线(一般为RX和TX)和方向控制线(DE和RE)。DE线用于控制发送数据时的数据线方向,RE线则用于接收数据时的方向。这些设置可以通过STM32的HAL库或LL库进行编程。 接着,你需要编写Modbus RTU协议栈的实现,这包括解析和构造Modbus报文、错误检测与处理、超时管理等。Modbus RTU报文由功能码、地址、数据和CRC校验码组成。主机向从机发送请求报文,从机会根据接收到的功能码执行相应的操作,并返回响应报文。 在主机端,你需要实现发送请求和接收响应的函数,以及解析从机返回的数据。在从机端,你需要监听串口,解析接收到的请求,执行相应的功能并构造响应报文。
### Abaqus 中衬砌结构中空洞的建模方法 在Abacus软件环境中,对于隧道衬砌结构中存在的空洞问题,可以通过多种方式来进行有效的模拟和处理。具体而言,在创建模型时应充分考虑到土体物理特性以及支撑结构工程属性的影响[^1]。 #### 方法一:几何缺陷法 通过精确绘制具有实际尺寸大小孔洞形状边界来定义其位置与形态特征;此过程需利用CAD工具完成复杂轮廓线描绘工作,并将其导入到有限元网格划分之前作为实体的一部分参与计算域构建流程之中。 ```python # Python 脚本用于生成带空洞衬砌结构几何模型 from abaqus import * from part import * def create_cavity_in_lining(radius, position): """Create a cavity within the lining structure""" myModel = mdb.models['Model-1'] myPart = myModel.Part(name='Lining_with_Cavity', dimensionality=THREE_D, type=DEFORMABLE_BODY) # 创建外壁面 outer_surface_points = [(0., 0.), (0., 10.), (8., 10.), (8., 0.)] mySketch = myModel.ConstrainedSketch(name='__profile__', sheetSize=20.) for point in outer_surface_points: mySketch glVertex(point) myPart.BaseSolidExtrude(sketch=mySketch, depth=5.) # 添加圆柱形空洞 inner_hole_sketch = myModel.ConstrainedSketch(name='innerHole', objectToCopy=None) inner_hole_sketch.CircleByCenterPerimeter(center=(position[0], position[1]), pointOn=(radius + position[0], position[1])) myPart.Cut(extrudeLine=myPart.edges.findAt((4., 5., 2.5)), sketchPlaneSide=SIDE1, sketchUpEdge=myPart.edges.findAt((7., 5., 2.5)), sketch=inner_hole_sketch) create_cavity_in_lining(1., (4., 5)) ``` #### 方法二:材料属性调整法 采用不同区域赋予差异化的弹性模量E值或泊松比ν参数设定策略实现局部软化效应表达目的——即让含有潜在裂缝/间隙部分表现出较低强度响应特点从而间接反映出存在内部损伤情况下的力学行为变化规律。 #### 技巧三:接触界面设置 当涉及到多层复合型墙体单元组合而成的整体体系内某一层间可能出现分离现象时,则可在相应交界面上引入特殊形式的摩擦约束条件(如罚函数算法),以此达到控制相对滑移程度并防止过度穿透的效果。 以上三种途径均可有效应对Abaqus环境下针对地下空间开发项目里所遇到的各种类型衬砌结构内的不连续性挑战,同时还需要注意施加合理的外部加载工况以确保仿真结果具备较高的可信度水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值