齐次Markov链稳态分布的求解

稳态分布

系统的稳态分布是指系统经过一步状态转移后,系统中各个状态的概率分布保持不变,即

\bf{\pi}\bf{P}=\bf{\pi}

其中,\bf{\pi} = [\pi_1, \cdots, \pi_{n}]表示系统n个状态的概率分布,\bf{P}为齐次Markov链的一步状态转移矩阵。

显然,当系统处于稳态时,系统虽然在运动,但从各自状态的分布上来看,是稳定的,不发生变化的。

迭代法求解

根据稳态的特性可知,系统在任意状态出发,经过充分多次的迭代,终将会到达稳态。

以某位男士戒烟过程为例,假设每天的吸烟情况服从齐次Markov链,即前一天是否吸烟与当天是否吸烟可由一步状态转移矩阵\bf{P}描述。令状态1为当天吸烟,状态2为当天不吸烟,则一步状态转移矩阵为

\bf{P} = \left[\begin{array}{cc} 0.8 & 0.2\\ 0.4 & 0.6 \end{array} \right ]

考虑该男士初始状态是吸烟的,即初始分布为\pi(0)= [1,0]。那么迭代的结果如图

由图可见,该男士大概率是无法戒烟,但可能会少吸些。如果他戒烟的决心大些,一步状态转移矩阵为

\bf{P} = \left[\begin{array}{cc} 0.5 & 0.5\\ 0.2 & 0.8 \end{array} \right ]

则迭代的结果如图

明显此条件下的不吸烟概率会大得多。

相应的迭代代码

P = [0.5, 0.5;0.2,0.8];
days = 30;
pi = zeros(days,2);
pi(1,:) = [1,0];
for k = 2:days 
    pi(k,:) = pi(k-1,:) * P;
end
figure, plot(1:days, pi(:,1), 'r', 1:days, pi(:,2), 'b')
xlabel('天');
ylabel('概率');

特征向量法求解

根据稳态分布的特点

\bf{\pi}\bf{P}=\bf{\pi}

两边转置得

\bf{P}^T\bf{\pi}^T=\bf{\pi}^T

显然,向量\bf{\pi}^T是矩阵\bf{P}^T的特征值1所对应的特征向量。因此,可以考虑对矩阵\bf{P}^T进行特征值分解,将特征值1对应的特征向量转置即可获得稳态分布。

假设齐次Markov链的一步状态转移矩阵为

\bf{P} = \left[\begin{array}{ccc} 1/2 & 1/3 & 1/6\\ 1/3 & 1/3 & 1/3\\ 1/3 & 1/2 & 1/6 \end{array}\right]

对矩阵\bf{P}^T进行特征值分解得

V =

   -0.6759   -0.8165   -0.0000
   -0.6276    0.4082   -0.7071
   -0.3862    0.4082    0.7071


D =

    1.0000         0         0
         0    0.1667         0
         0         0   -0.1667

特征值1对应的特征向量的转置为[-0.6759, -0.6276, -0.3862],显然不是概率分布。

产生上述问题的原因在于,稳态分布向量\bf{\pi}^T是矩阵\bf{P}^T的特征值1对应的特征向量,是必要条件,不是充分条件。主要因为矩阵\bf{P}^T的规一化正交基不是唯一的,所以会导致不同正交基下的特征值1对应的特征向量不同,也不一定是稳态分布。

综上所述,特征值分解的方法并不是一种有效地求解稳态分布的方法。

矩阵求逆法求解

根据稳态性质

\bf{\pi}\bf{P}=\bf{\pi}

可得

\bf{\pi}[\bf{P}-\bf{I}]=0

式中,\bf{I}为单位矩阵。考虑

\sum_{k=1}^{n}\pi_k=1

则可定义

\bf{\pi}\bf{E}=\bf{1}

其中,

\bf{E}=\left[\begin{array} {cccc} 1& 1& \cdots & 1\\ 1& 1& \cdots & 1\\ \vdots &\vdots &\vdots & \vdots\\ 1& 1& \cdots & 1 \end{array} \right ]

\bf{1}=[1,1,\cdots, 1]

所以,综合可得

\bf{\pi}[\bf{P} - \bf{I} + \bf{E}] = \bf{1}

\bf{\pi}=\bf{1}[\bf{P}-\bf{I}+\bf{E}]^{-1}

例如,上例中的一步状态转移矩阵

\bf{P} = \left[\begin{array}{ccc} 1/2 & 1/3 & 1/6\\ 1/3 & 1/3 & 1/3\\ 1/3 & 1/2 & 1/6 \end{array}\right]

[\bf{P}-\bf{I}+\bf{E}]求逆,并由向量\bf{1}与之相乘得

\bf{\pi} = [0.4, 0.3714, 0.2286]

完美!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带着地球去浪一浪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值