稳态分布
系统的稳态分布是指系统经过一步状态转移后,系统中各个状态的概率分布保持不变,即
其中,表示系统
个状态的概率分布,
为齐次Markov链的一步状态转移矩阵。
显然,当系统处于稳态时,系统虽然在运动,但从各自状态的分布上来看,是稳定的,不发生变化的。
迭代法求解
根据稳态的特性可知,系统在任意状态出发,经过充分多次的迭代,终将会到达稳态。
以某位男士戒烟过程为例,假设每天的吸烟情况服从齐次Markov链,即前一天是否吸烟与当天是否吸烟可由一步状态转移矩阵描述。令状态1为当天吸烟,状态2为当天不吸烟,则一步状态转移矩阵为
考虑该男士初始状态是吸烟的,即初始分布为。那么迭代的结果如图
由图可见,该男士大概率是无法戒烟,但可能会少吸些。如果他戒烟的决心大些,一步状态转移矩阵为
则迭代的结果如图
明显此条件下的不吸烟概率会大得多。
相应的迭代代码
P = [0.5, 0.5;0.2,0.8];
days = 30;
pi = zeros(days,2);
pi(1,:) = [1,0];
for k = 2:days
pi(k,:) = pi(k-1,:) * P;
end
figure, plot(1:days, pi(:,1), 'r', 1:days, pi(:,2), 'b')
xlabel('天');
ylabel('概率');
特征向量法求解
根据稳态分布的特点
两边转置得
显然,向量是矩阵
的特征值1所对应的特征向量。因此,可以考虑对矩阵
进行特征值分解,将特征值1对应的特征向量转置即可获得稳态分布。
假设齐次Markov链的一步状态转移矩阵为
对矩阵进行特征值分解得
V =
-0.6759 -0.8165 -0.0000
-0.6276 0.4082 -0.7071
-0.3862 0.4082 0.7071
D =
1.0000 0 0
0 0.1667 0
0 0 -0.1667
特征值1对应的特征向量的转置为,显然不是概率分布。
产生上述问题的原因在于,稳态分布向量是矩阵
的特征值1对应的特征向量,是必要条件,不是充分条件。主要因为矩阵
的规一化正交基不是唯一的,所以会导致不同正交基下的特征值1对应的特征向量不同,也不一定是稳态分布。
综上所述,特征值分解的方法并不是一种有效地求解稳态分布的方法。
矩阵求逆法求解
根据稳态性质
可得
式中,为单位矩阵。考虑
则可定义
其中,
所以,综合可得
例如,上例中的一步状态转移矩阵
对求逆,并由向量
与之相乘得
完美!