4. Compact Subspaces and Connected Subspaces of Rn

这一节回顾两个重要的概念:紧致集和联通集。由于本书主要讨论 R n \mathbf R^n Rn上的情况,因此紧致和有界闭集是等价的,但本节练习中也提到了非 R n \mathbf R^n Rn上的情况。
Theorem 4.1其实是很多书上紧致集的定义。
Theorem 4.2很简单, R \mathbf R R上闭区间是compact的。
Theorem 4.3说明在 R n \mathbf R^n Rn上compact可以推出closed和bounded,推论是最大最小值定理。
Theorem 4.5是极值定理,说明compact区间上的连续函数的值域也是compact的(连续函数保留compact特性)
Theorem 4.6 ϵ \epsilon ϵ邻域定理,如果 U U U是包含紧致集 X X X的一个开集,那么可以找到一个 X X X ϵ \epsilon ϵ邻域包含在 U U U中。
Theorem 4.7是一致连续定理,compact集上的连续函数是一致连续的。
Theorem 4.9说明在 R n \mathbf R^n Rn上closed和bounded可以推出compact
Theorem 4.10说明 R \mathbf R R上闭区间是联通的。
Theorem 4.11是介值定理。

Exercises

Exercise 1. Let R + \mathbf R_{+} R+ denote the set of positive real numbers.
( a ) Show that the continuous function f : R + → R f:\mathbf{R_+}\to\mathbf{R} f:R+R given by f ( x ) = 1 / ( 1 + x ) f(x)=1/(1+x) f(x)=1/(1+x) is bounded but has neither a maximum value nor a minimum value.
( b ) Show that the continuous function g : R + → R g:\mathbf{R_+}\to\mathbf{R} g:R+R given by g ( x ) = sin ⁡ ( 1 / x ) g(x)=\sin{(1/x)} g(x)=sin(1/x) is bounded but does not satisfy the condition of uniform continuity on R + \mathbf{R_+} R+.
Solution:
(a) x > 0 x>0 x>0 means 1 + x > 1 1+x>1 1+x>1 and thus f ( x ) < 1 f(x)<1 f(x)<1, also f ( x ) > 0 f(x)>0 f(x)>0 is obvious, thus 0 < f ( x ) < 1 0<f(x)<1 0<f(x)<1, and f f f is bounded. Since f ( R + ) = ( 0 , 1 ) f(\mathbf{R}_+)=(0,1) f(R+)=(0,1), f f f has neither maximum value nor minimum value.
(b) It is obvious that − 1 ≤ g ( x ) ≤ 1 -1\leq g(x)\leq 1 1g(x)1. To see g g g is not uniform continuous, let ∀ δ > 0 \forall\delta>0 δ>0, choose k ∈ N + k\in\mathbf{N}^+ kN+ such that 4 k δ > 1 4k\delta>1 4kδ>1, if we let x 1 = 1 / 2 k π , x 2 = 1 / ( 2 k π + π / 2 ) x_1=1/2k\pi,x_2=1/(2k\pi+\pi/2) x1=1/2kπ,x2=1/(2kπ+π/2), then
∣ x 1 − x 2 ∣ = ∣ 1 2 k π − 1 2 k π + π / 2 ∣ = π / 2 2 k π ( 2 k π + π / 2 ) = 1 4 k ( 2 k π + π / 2 ) < 1 4 k < δ |x_1-x_2|=\left|\frac{1}{2k\pi}-\frac{1}{2k\pi+\pi/2}\right|=\frac{\pi/2}{2k\pi(2k\pi+\pi/2)}=\frac{1}{4k(2k\pi+\pi/2)} <\frac{1}{4k}<\delta x1x2=2kπ12kπ+π/21=2kπ(2kπ+π/2)π/2=4k(2kπ+π/2)1<4k1<δ
but ∣ g ( x 1 ) − g ( x 2 ) ∣ = ∣ sin ⁡ ( 2 k π ) − sin ⁡ ( 2 k π + π / 2 ) ∣ = 1 |g(x_1)-g(x_2)|=|\sin(2k\pi)-\sin(2kπ+π/2)|=1 g(x1)g(x2)=sin(2kπ)sin(2kπ+π/2)=1.

Exercise 2. Let X X X denote the subset ( − 1 , 1 ) × 0 (-1,1)\times 0 (1,1)×0 of R 2 \mathbf{R^2} R2, and let U U U be the open ball B ( 0 ; 1 ) B(\mathbf{0};1) B(0;1) in R 2 \mathbf{R^2} R2, which contains X X X. Show there is no ϵ > 0 \epsilon>0 ϵ>0 such that the ϵ \epsilon ϵ-neighborhood of X X X in R n \mathbf{R^n} Rn is contained in U U U.
Solution: Given any ϵ > 0 \epsilon>0 ϵ>0, the point a = ( 1 − ϵ / 2 , 0 ) ∈ X \mathbf{a}=(1-\epsilon/2,0)\in X a=(1ϵ/2,0)X, and B ( a , ϵ ) B(\mathbf{a},\epsilon) B(a,ϵ) is a ϵ \epsilon ϵ-neighborhood of X X X, but for the point b = ( 1 + ϵ / 4 , 0 ) \mathbf{b}=(1+\epsilon/4,0) b=(1+ϵ/4,0), we have
∥ b − a ∥ = 3 ϵ / 4 < ϵ    ⟹    b ∈ B ( a , ϵ ) , ∥ b − 0 ∥ = 1 + ϵ / 4 > 1    ⟹    b ∉ B ( 0 , 1 ) = U \|\mathbf{b}-\mathbf{a}\|=3\epsilon/4<\epsilon \implies b\in B(\mathbf{a},\epsilon),\quad \|\mathbf{b}-\mathbf{0}\|=1+\epsilon/4>1 \implies \mathbf{b}\notin B(\mathbf{0},1)=U ba=3ϵ/4<ϵbB(a,ϵ),b0=1+ϵ/4>1b/B(0,1)=U
thus B ( a , ϵ ) ⊈ U B(\mathbf{a},\epsilon)\nsubseteq U B(a,ϵ)U.

Exercise 3. Let R ∞ \mathbf{R}^{\infty} R be the set of all “infinite-tuples” x = ( x 1 , x 2 , …   ) \mathbf{x}=(x_1,x_2,\dots) x=(x1,x2,) of real numbers that end in an infinite string of 0’s. Define an inner product on R ∞ \mathbf{R}^{\infty} R by the rule ⟨ x , y ⟩ = ∑ x i y i \langle x,y\rangle=\sum{x_iy_i} x,y=xiyi. (This is a funite sum, since all but finitely many terms vanish.) Let ∥ x − y ∥ \|\mathbf{x}-\mathbf{y}\| xy be the corresponding metric on R ∞ \mathbf{R}^{\infty} R. Define
e i = ( 0 , … , 0 , 1 , 0 , … , 0 , …   ) \mathbf{e}_i=(0,\dots,0,1,0,\dots,0,\dots) ei=(0,,0,1,0,,0,)
where 1 appears in the i t h i^{th} ith place. Then the e i \mathbf{e}_i ei form a basis for R ∞ \mathbf{R}^{\infty} R. Let X X X be the set of all the points e i \mathbf{e}_i ei. Show that X X X is closed, bounded and non-compact.
Solution: X X X contains only isolated points, thus is closed. Since ∥ e i ∥ = ⟨ e i , e i ⟩ = 1 , ∀ i \|\mathbf{e}_i\|=\sqrt{\langle \mathbf{e}_i,\mathbf{e}_i\rangle}=1,\forall i ei=ei,ei =1,i, X X X is bounded.
To see X X X is not compact, notice that ∥ e i − e j ∥ = 2 , ∀ i ≠ j \|\mathbf{e}_i-\mathbf{e}_j\|=\sqrt{2},\forall i\neq j eiej=2 ,i=j, then B ( e i , 1 ) ∩ X = e i , ∀ i B(\mathbf{e}_i,1)\cap X=\mathbf{e}_i,\forall i B(ei,1)X=ei,i, the open sets { B ( e i , 1 ) : i ∈ N + } \{B(\mathbf{e}_i,1):i\in \mathbf{N}^+ \} {B(ei,1):iN+} covers X X X, but no finite subcover of X X X exists.

Exercise 4.
( a ) Show that open balls and open cubes in R n \mathbf{R}^n Rn are convex.
( b ) Show that (open and closed) rectangles in R n \mathbf{R}^n Rn are convex.
Solution:
( a ) Let B ( y , ϵ ) B(\mathbf{y},{\epsilon}) B(y,ϵ) be an open ball in R n \mathbf{R}^n Rn, C ( y , ϵ ) C(\mathbf{y},{\epsilon}) C(y,ϵ) be an open cube in R n \mathbf{R}^n Rn. First for any a , b ∈ B ( y , ϵ ) \mathbf{a},\mathbf{b}\in B(\mathbf{y},{\epsilon}) a,bB(y,ϵ), there is the relation ∥ a − y ∥ < ϵ , ∥ b − y ∥ < ϵ \|\mathbf{a}-\mathbf{y}\|<{\epsilon},\|\mathbf{b}-\mathbf{y}\|<{\epsilon} ay<ϵ,by<ϵ, thus if x = a + t ( b − a ) , 0 ≤ t ≤ 1 \mathbf{x}=\mathbf{a}+t(\mathbf{b}-\mathbf{a}),0\leq t\leq 1 x=a+t(ba),0t1, then
∥ x − y ∥ = ∥ a + t ( b − a ) − y ∥ = ∥ ( 1 − t ) ( a − y ) + t ( b − y ) ∥ ≤ ( 1 − t ) ∥ a − y ∥ + t ∥ b − y ∥ < ϵ \begin{aligned}\|\mathbf{x}-\mathbf{y}\|&=\|\mathbf{a}+t(\mathbf{b}-\mathbf{a})-\mathbf{y}\|=\|(1-t)(\mathbf{a}-\mathbf{y})+t(\mathbf{b}-\mathbf{y})\|\\&\leq (1-t)\|\mathbf{a}-\mathbf{y}\|+t\|\mathbf{b}-\mathbf{y}\|<{\epsilon}\end{aligned} xy=a+t(ba)y=(1t)(ay)+t(by)(1t)ay+tby<ϵ
which means x ∈ B ( y , ϵ ) \mathbf{x}\in B(\mathbf{y},{\epsilon}) xB(y,ϵ), thus B ( y , ϵ ) B(\mathbf{y},{\epsilon}) B(y,ϵ) is convex.
Next for any a , b ∈ C ( y , ϵ ) a,b\in C(\mathbf{y},{\epsilon}) a,bC(y,ϵ), there is the relation ∣ a − y ∣ < ϵ , ∣ b − y ∣ < ϵ |\mathbf{a}-\mathbf{y}|<{\epsilon},|\mathbf{b}-\mathbf{y}|<{\epsilon} ay<ϵ,by<ϵ, thus if x = a + t ( b − a ) , 0 ≤ t ≤ 1 \mathbf{x}=\mathbf{a}+t(\mathbf{b}-\mathbf{a}),0\leq t\leq 1 x=a+t(ba),0t1, then
∣ x − y ∣ = ∣ a + t ( b − a ) − y ∣ = ∣ ( 1 − t ) ( a − y ) + t ( b − y ) ∣ ≤ ( 1 − t ) ∣ a − y ∣ + t ∣ b − y ∣ < ϵ \begin{aligned}|\mathbf{x}-\mathbf{y}|&=|\mathbf{a}+t(\mathbf{b}-\mathbf{a})-\mathbf{y}|=|(1-t)(\mathbf{a}-\mathbf{y})+t(\mathbf{b}-\mathbf{y})|\\&\leq (1-t)|\mathbf{a}-\mathbf{y}|+t|\mathbf{b}-\mathbf{y}|<{\epsilon}\end{aligned} xy=a+t(ba)y=(1t)(ay)+t(by)(1t)ay+tby<ϵ
which means x ∈ C ( y , ϵ ) \mathbf{x}\in C(\mathbf{y},{\epsilon}) xC(y,ϵ), thus C ( y , ϵ ) C(\mathbf{y},{\epsilon}) C(y,ϵ) is convex.
( b ) If Q Q Q is a rectangle in R n \mathbf{R}^n Rn, we can write Q = [ c 1 , d 1 ] × ⋯ × [ c n , d n ] Q=[c_1,d_1 ]\times{\cdots}\times[c_n,d_n] Q=[c1,d1]××[cn,dn], for any a , b ∈ Q a,b\in Q a,bQ, we write a = ( a 1 , … , a n ) , b = ( b 1 , … , b n ) a=(a_1,{\dots},a_n ),b=(b_1,{\dots},b_n) a=(a1,,an),b=(b1,,bn), then there is the relation
c i ≤ a i , b i ≤ d i , 1 ≤ i ≤ n c_i\leq a_i,b_i\leq d_i,\quad 1\leq i\leq n ciai,bidi,1in
thus if x = a + t ( b − a ) , 0 ≤ t ≤ 1 \mathbf{x}=\mathbf{a}+t(\mathbf{b}-\mathbf{a}),0\leq t\leq 1 x=a+t(ba),0t1, then x i = a i + t ( b i − a i ) = ( 1 − t ) a i + t b i ∈ [ c i , d i ] x_i=a_i+t(b_i-a_i )=(1-t) a_i+tb_i\in [c_i,d_i ] xi=ai+t(biai)=(1t)ai+tbi[ci,di], so x ∈ Q \mathbf{x}\in Q xQ.
If Q Q Q is an open rectangle in R n \mathbf{R}^n Rn, the proof is very similar.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值