3.2 The Algebra of Linear Transformations

本文探讨了线性变换的理论,包括线性组合、向量空间、维数关系、复合变换、算子概念及逆变换。通过实例揭示了线性算子的多样性和非奇异、满射与可逆的关系。并介绍了当维度相等时,线性变换的非奇异、满射和可逆等性质的相互关系。最后,文章提供了多项练习题来深化理解。
摘要由CSDN通过智能技术生成

这一节内容非常丰富。Theorem 4提出了linear transformation的线性组合是什么,以及所有的linear transformation是一个vector space。Theorem 5是说明 L ( V , W ) L(V,W) L(V,W) V , W V,W V,W的dimension之间的关系。Theorem 6定义了linear transformation的composition。在同一个space上的linear transformation称为operator,有翻译为算子的。EXAMPLE8-10都是很好的例子,其揭示了linear operator可以是多样的。之后定义invertible的概念,注意invertible是在两个不同的space中可以成为单位算子,Theorem 7说明inverse也是linear transformation。然后是non-singular的概念,很类似于函数中的injective,Theorem 8说明non-singular的线性变换可以保持线性无关性。EXAMPLE11说明non-singular和onto之间没有必然的关系,EXAMPLE12则是一个同时non-singular和onto(从而invertible)的例子。Theorem 9说明,如果 dim ⁡ V = dim ⁡ W \dim V=\dim W dimV=dimW,那么从 V V V W W W的线性变换 T T T满足non-singular、onto和invertible三者成立其一则另外两者也成立。最后给出了group和commutative group的定义。

Exercises

  1. Let T T T and U U U be the linear operators on R 2 R^2 R2 defined by
    T ( x 1 , x 2 ) = ( x 2 , x 1 ) and U ( x 1 , x 2 ) = ( x 1 , 0 ) T(x_1,x_2)=(x_2,x_1)\quad\text{and}\quad U(x_1,x_2)=(x_1,0) T(x1,x2)=(x2,x1)andU(x1,x2)=(x1,0)
    ( a ) How would you describe T T T and U U U geometrically?
    ( b ) Give rules like the ones definning T T T and U U U for each of the transformations ( U + T ) , U T , T U , T 2 , U 2 (U+T),UT,TU,T^2,U^2 (U+T),UT,TU,T2,U2.
    Solution:
    ( a ) T T T is a symmetric transformation with respect to the line y = x y=x y=x, U U U is the projection on x x x-axis.
    ( b ) We have
    ( U + T ) ( x 1 , x 2 ) = ( x 1 + x 2 , x 1 ) U T ( x 1 , x 2 ) = ( x 2 , 0 ) T U ( x 1 , x 2 ) = ( 0 , x 1 ) T 2 ( x 1 , x 2 ) = ( x 1 , x 2 ) U 2 ( x 1 , x 2 ) = ( x 1 , 0 ) \begin{aligned}(U+T)(x_1,x_2 )&=(x_1+x_2,x_1 ) \\ UT(x_1,x_2 )&=(x_2,0) \\ TU(x_1,x_2 )&=(0,x_1 ) \\ T^2 (x_1,x_2 )&=(x_1,x_2 ) \\ U^2 (x_1,x_2 )&=(x_1,0)\end{aligned} (U+T)(x1,x2)UT(x1,x2)TU(x1,x2)T2(x1,x2)U2(x1,x2)=(x1+x2,x1)=(x2,0)=(0,x1)=(x1,x2)=(x1,0)

  2. Let T T T be the (unique) linear operator on C 3 C^3 C3 for which
    T ϵ 1 = ( 1 , 0 , i ) , T ϵ 2 = ( 0 , 1 , 1 ) , T ϵ 3 = ( i , 1 , 0 ) . T\epsilon_1 =(1,0,i),\quad T\epsilon_2 =(0,1,1),\quad T\epsilon_3 =(i,1,0). Tϵ1=(1,0,i),Tϵ2=(0,1,1),Tϵ3=(i,1,0).
    Is T T T invertible?
    Solution: No, since T ( ϵ 3 − i ϵ 1 ) = ( i , 1 , 0 ) − ( i , 0 , − 1 ) = ( 0 , 1 , 1 ) = T ϵ 2 T(ϵ_3-iϵ_1 )=(i,1,0)-(i,0,-1)=(0,1,1)=Tϵ_2 T(ϵ3iϵ1)=(i,1,0)(i,0,1)=(0,1,1)=Tϵ2, thus
    T ( ϵ 3 − i ϵ 1 − ϵ 2 ) = 0 T(ϵ_3-iϵ_1-ϵ_2 )=0 T(ϵ3iϵ1ϵ2)=0
    but ϵ 3 − i ϵ 1 − ϵ 2 = ( − i , − 1 , 1 ) ≠ 0 ϵ_3-iϵ_1-ϵ_2=(-i,-1,1)≠0 ϵ3iϵ1ϵ2=(i,1,1)=0.

  3. Let T T T be the linear operator on R 3 R^3 R3 defined by
    T ( x 1 , x 2 , x 3 ) = ( 3 x 1 , x 1 − x 2 , 2 x 1 + x 2 + x 3 ) T(x_1,x_2,x_3)=(3x_1,x_1-x_2,2x_1+x_2+x_3) T(x1,x2,x3)=(3x1,x1x2,2x1+x2+x3)
    Is T T T invertible? If so, find a rule for T − 1 T^{-1} T1 like the one which defines T T T.
    Solution: T T T is invertible, the rule for T − 1 T^{-1} T1 can be described as
    T − 1 ( x 1 , x 2 , x 3 ) = ( 1 3 x 1 , 1 3 x 1 − x 2 , − x 1 + x 2 + x 3 ) T^{-1} (x_1,x_2,x_3 )=\left(\frac{1}{3} x_1,\frac{1}{3} x_1-x_2,-x_1+x_2+x_3 \right) T1(x1,x2,x<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值