【矩阵论】6.总结1

6. 总结1

1. 等价标准形 行列式因子 不变因子 初等因子 Jordan标准形 最小多项式

等价 A ( λ ) ≅ B ( λ ) \boldsymbol A(\lambda)\cong \boldsymbol B(\lambda) A(λ)B(λ) 的充要条件
存在 m m m 阶可逆 λ \lambda λ P ( λ ) \boldsymbol P(\lambda) P(λ) n n n 阶可逆 λ \lambda λ Q ( λ ) \boldsymbol Q(\lambda) Q(λ),使 B ( λ ) = P ( λ ) A ( λ ) Q ( λ ) . \boldsymbol B(\lambda)=\boldsymbol P(\lambda)\boldsymbol A(\lambda)\boldsymbol Q(\lambda). B(λ)=P(λ)A(λ)Q(λ).

A ( λ ) A(λ) A(λ)等价标准形 I r ( λ ) = ( D ( λ ) O O O ) I_r(\lambda)=\begin{pmatrix}\boldsymbol {D}(\lambda)&\boldsymbol{O}\\ \boldsymbol{O}&\boldsymbol{O}\end{pmatrix} Ir(λ)=(D(λ)OOO)

A ( λ ) A(\lambda) A(λ) 的所有 k k k 阶子式的首项系数为 1 1 1 的最大公因式称为 A ( λ ) A(λ) A(λ) k k k行列式因子 D k ( λ ) . D_k(\lambda). Dk(λ).

d k ( λ ) = D k ( λ ) / D k − 1 ( λ ) ( 1 ⩽ k ⩽ r ) d_k(\lambda)=D_k(\lambda)/D_{k-1}(\lambda) (1\leqslant k\leqslant r) dk(λ)=Dk(λ)/Dk1(λ)(1kr) A ( λ ) A(\lambda) A(λ) 的 第 k k k不变因子,其中 D 0 ( λ ) = 1. D_0(\lambda)=1. D0(λ)=1.

不变因子在复数域 C \mathbb C C 上有下面的标准分解式,称因式 ( λ − a i ) l j (\lambda-a_i)^{l_j} (λai)lj A ( λ ) A(\lambda) A(λ)初等因子.

分块矩阵 J = [ J 1 J 2 ⋱ J s ] \boldsymbol{J}=\begin{bmatrix}\boldsymbol{J}_1\\&\boldsymbol{J}_2\\&&\ddots\\&&&\boldsymbol{J}_s\end{bmatrix} J= J1J2Js 称为 Jordan 标准形,其中 J i = [ λ i 1 λ i ⋱ ⋱ 1 λ i ] n i \boldsymbol{J}_i=\begin{bmatrix}\lambda_i&1\\&\lambda_i&\ddots\\&&\ddots&1\\&&&\lambda_i\end{bmatrix}_{n_i} Ji= λi1λi1λi ni

A \mathbf A A 的首项系数为 1 1 1 的次数最低的零化多项式为 A \mathbf A A最小多项式,记作 m A ( λ ) . m_{\mathbf{A}}(\lambda). mA(λ).

例 1.11 λ λ λ A ( λ ) = [ 1 − λ 2 λ − 1 λ λ λ 2 − λ 1 + λ 2 λ 3 + λ − 1 − λ 2 ] A(\lambda)=\begin{bmatrix}1-\lambda&2\lambda-1&\lambda\\\lambda&\lambda^2&-\lambda\\1+\lambda^2&\lambda^3+\lambda-1&-\lambda^2\end{bmatrix} A(λ)= 1λλ1+λ22λ1λ2λ3+λ1λλλ2 的等价标准形,
解 把 λ \lambda λ 阵化成等价标准形的步骤是:
首先观察 A ( λ ) \boldsymbol{A}(\lambda) A(λ) 的(1,1)元素是否能整除其他元素. 若能,则用初等变换把第一行和第一列的其余元素都化为零;
若不能,则由 a 1 i = q a 11 + r a_{1i}=qa_{11}+r a1i=qa11+r a 11 a_{11} a11 换为 r r r , 降低(1,1)元素的次数,直到变化后的矩阵其(1,1)元素能整除其他元素,
再用初等变换将第一行和第一列的其余元素都化为零 . 然后,考察变换后矩阵的(2,2)元素否能整除(1,1)元素以外的元素,类似地重复前面的讨程,直到化成标准形矩阵。
A ( λ ) = [ 1 − λ 2 λ − 1 λ λ λ 2 − λ 1 + λ 2 λ 3 + λ − 1 − λ 2 ] → r 3 − λ r 2 r 1 + r 2 [ 1 λ 2 + 2 λ − 1 0 λ λ 2 − λ 1 λ − 1 0 ] → r 3 − r 1 r 2 − λ r 1 ( 1 λ 2 + 2 λ − 1 0 0 − λ 3 − λ 2 + λ − λ 0 − λ 2 − λ 0 ) → c 2 − ( λ 2 + 2 λ − 1 ) c 1 ( 1 0 0 0 − λ 3 − λ 2 + λ − λ 0 − λ 2 − λ 0 ) → r 2 − λ r 3 [ 1 0 0 0 λ − λ 0 − λ 2 − λ 0 ] → r 3 − ( λ − 1 ) r 2 c 3 + c 2 [ 1 0 0 0 λ 0 0 0 λ ( λ + 1 ) ] = I 3 ( λ ) . \begin{aligned} A(\lambda)& =\begin{bmatrix}1-\lambda&2\lambda-1&\lambda\\\lambda&\lambda^2&-\lambda\\1+\lambda^2&\lambda^3+\lambda-1&-\lambda^2\end{bmatrix}\xrightarrow[r_3-\lambda r_2]{r_1+r_2}\begin{bmatrix}1&\lambda^2+2\lambda-1&0\\\lambda&\lambda^2&-\lambda\\1&\lambda-1&0\end{bmatrix} \\ &\xrightarrow{r_3-r_1}_{r_2-\lambda r_1}\begin{pmatrix}1&\lambda^2+2\lambda-1&0\\0&-\lambda^3-\lambda^2+\lambda&-\lambda\\0&-\lambda^2-\lambda&0\end{pmatrix}\xrightarrow{c_2-(\lambda^2+2\lambda-1)c_1}\begin{pmatrix}1&0&0\\0&-\lambda^3-\lambda^2+\lambda&-\lambda\\0&-\lambda^2-\lambda&0\end{pmatrix} \\ &\xrightarrow{r_2-\lambda r_3}\begin{bmatrix}1&0&0\\0&\lambda&-\lambda\\0&-\lambda^2-\lambda&0\end{bmatrix}\xrightarrow[r_3-(\lambda-1)r_2]{c_3+c_2}\begin{bmatrix}1&0&0\\0&\lambda&0\\0&0&\lambda(\lambda+1)\end{bmatrix}=I_3(\lambda). \end{aligned} A(λ)= 1λλ1+λ22λ1λ2λ3+λ1λλλ2 r1+r2 r3λr2 1λ1λ2+2λ1λ2λ10λ0 r3r1 r2λr1 100λ2+2λ1λ3λ2+λλ2λ0λ0 c2(λ2+2λ1)c1 1000λ3λ2+λλ2λ0λ0 r2λr3 1000λλ2λ0λ0 c3+c2 r3(λ1)r2 1000λ000λ(λ+1) =I3(λ).

例 1.17 A ( λ ) = ( λ − 1 1 0 − 2 λ − 4 1 0 0 λ − 3 ) A(\lambda)=\begin{pmatrix}\lambda-1&1&0\\-2&\lambda-4&1\\0&0&\lambda-3\end{pmatrix} A(λ)= λ1201λ4001λ3 的等价标准形.
解 因 A ( λ ) A( \lambda ) A(λ) 的元素中有非零数 1 1 1 , 故 D 1 ( λ ) = 1. D_{_1}(\lambda)=1. D1(λ)=1. A ( λ ) A( \lambda ) A(λ) 有 二 阶 子 式 ∣ 1 0 λ − 4 1 ∣ \begin{vmatrix} 1& 0\\ \lambda- 4& 1\end{vmatrix} 1λ401 , 故
D 2 ( λ ) = 1 , D 3 ( λ ) = ∣ λ − 1 1 0 − 2 λ − 4 1 0 0 λ − 3 ∣ = ( λ − 2 )   ( λ − 3 ) 2 , D_2(\lambda)=1,\quad D_3(\lambda)=\begin{vmatrix}\lambda-1&1&0\\-2&\lambda-4&1\\0&0&\lambda-3\end{vmatrix}=(\lambda-2)\:(\lambda-3)^2, D2(λ)=1,D3(λ)= λ1201λ4001λ3 =(λ2)(λ3)2,于是 d 1 ( λ ) = d 2 ( λ ) = 1 d_{1}( \lambda ) = d_{2}( \lambda ) = 1 d1(λ)=d2(λ)=1, d 3 ( λ ) = ( λ − 2 ) ( λ − 3 ) 2 . d_{3}( \lambda ) = ( \lambda - 2) ( \lambda - 3) ^{2}. d3(λ)=(λ2)(λ3)2.
A ( λ ) A(\lambda) A(λ) 的等价标准形是 I r ( λ ) = [ 1 1 ( λ − 2 ) ( λ − 3 ) 2 ] . \boldsymbol{I}_r(\lambda)=\begin{bmatrix}1&&\\&1&\\&&(\lambda-2)(\lambda-3)^2\end{bmatrix}. Ir(λ)= 11(λ2)(λ3)2 .

例如,如果一个 5 阶 λ \lambda λ A ( λ ) A(\lambda) A(λ) 的等价标准形是                     ~~~~~~~~~~~~~~~~~~~                    那么 A ( λ ) A(\lambda) A(λ) 的所有不变因子在复数域 C \mathbb C C上的标准分解式为
  ~  
I r ( λ ) = [ 1 λ − 2 ( λ − 2 ) ( λ + 3 ) ( λ − 2 ) 2 ( λ + 3 ) 2 0 ] . \boldsymbol{I}_r(\lambda)=\begin{bmatrix}1&&&&\\&\lambda-2&&&\\&&(\lambda-2)(\lambda+3)&&\\&&&(\lambda-2)^2(\lambda+3)^2&\\&&&&0\end{bmatrix}. Ir(λ)= 1λ2(λ2)(λ+3)(λ2)2(λ+3)20 .                     d 1 ( λ ) = 1 , d 2 ( λ ) = λ − 2 , d 3 ( λ ) = ( λ − 2 ) ( λ + 3 )   , d 4 ( λ ) = ( λ − 2 ) 2 ( λ + 3 ) 2 . ~~~~~~~~~~~~~~~~~~~\begin{aligned}&d_{1}(\lambda)=1,\\&d_{2}(\lambda)=\lambda-2,\\&d_{3}(\lambda)=(\lambda-2)(\lambda+3)\:,\\&d_{4}(\lambda)=(\lambda-2)^{2}(\lambda+3)^{2}.\end{aligned}                    d1(λ)=1,d2(λ)=λ2,d3(λ)=(λ2)(λ+3),d4(λ)=(λ2)2(λ+3)2.
  ~  
所以 , A ( λ ) ,A(\lambda) ,A(λ) 的全体初等因子为 λ − 2 , λ − 2 , ( λ − 2 ) 2 , λ + 3 , ( λ + 3 ) 2 . \lambda-2,\lambda-2,(\lambda-2)^{2},\lambda+3,(\lambda+3)^{2}. λ2,λ2,(λ2)2,λ+3,(λ+3)2.
  ~  
已知 A ( λ ) A(λ) A(λ) 的秩是 4 4 4 , 因此,首先取 A ( λ ) A(\lambda) A(λ) 的全部初等因子 λ − 2 , λ − 2 , ( λ − 2 ) 2 , λ + 3 , ( λ + 3 ) 2 \lambda-2,\lambda-2,(\lambda-2)^2,\lambda+3,(\lambda+3)^2 λ2,λ2,(λ2)2,λ+3,(λ+3)2 的最小公倍式作为 A ( λ ) A(\lambda) A(λ) 的第 4 4 4 个不变因子,即 d 4 ( λ ) = ( λ − 2 ) 2 ( λ + 3 ) 2 d_4(\lambda)=(\lambda-2)^2(\lambda+3)^2 d4(λ)=(λ2)2(λ+3)2 , 然后再取剩余的初等因子 λ − 2 , λ − 2 , λ + 3 \lambda-2,\lambda-2,\lambda+3 λ2,λ2,λ+3 的最小公倍式作为 A ( λ ) A(\lambda) A(λ)的第 3 个不变因子,即 d 3 ( λ ) = ( λ − 2 ) ( λ + 3 ) . d_3(\lambda)=(\lambda-2)(\lambda+3). d3(λ)=(λ2)(λ+3).同理得到 d 2 ( λ ) = λ − 2. d_{_2}(\lambda)=\lambda-2. d2(λ)=λ2.这时 A ( λ ) A(\lambda) A(λ)的全部初等因子都已经使用过了,于是剩余的不变因子 d 1 ( λ ) = 1. d_1(\lambda)=1. d1(λ)=1.

例 1.23 A = [ 1 − 1 0 2 4 − 1 0 0 3 ] \mathbf{A}=\begin{bmatrix}1&-1&0\\2&4&-1\\0&0&3\end{bmatrix} A= 120140013 的 Jordan标准形.
解 因为
λ E − A = [ λ − 1 1 0 − 2 λ − 4 1 0 0 λ − 3 ] → c 1 ↔ c 2 [ 1 λ − 1 0 λ − 4 − 2 1 0 0 λ − 3 ] → r 2 − ( λ − 4 ) r 1 c 2 − ( λ − 1 ) c 1 [ 1 0 0 0 − λ 2 + 5 λ − 6 1 0 0 λ − 3 ] → c 2 ↔ c 3 [ 1 0 0 0 1 − λ 2 + 5 λ − 6 0 λ − 3 0 ] → r 3 − ( − λ 2 + 5 λ − 6 ) r 2 c 3 − ( λ − 3 ) c 2 [ 1 0 0 0 1 0 0 0 ( λ − 2 ) ( λ − 3 ) 2 ] \begin{aligned} \lambda E- A=&\begin{bmatrix}\lambda-1&1&0\\-2&\lambda-4&1\\0&0&\lambda-3\end{bmatrix}\xrightarrow{c_{1}\leftrightarrow c_{2}}\begin{bmatrix}1&\lambda-1&0\\\lambda-4&-2&1\\0&0&\lambda-3\end{bmatrix} \\ &\xrightarrow[r_2-(\lambda-4)r_1]{c_2-(\lambda-1)c_1}\begin{bmatrix}1&0&0\\0&-\lambda^2+5\lambda-6&1\\0&0&\lambda-3\end{bmatrix} \xrightarrow{c_{2}\leftrightarrow c_{3}}\begin{bmatrix}1&0&0\\0&1&-\lambda^2+5\lambda-6\\0&\lambda-3&0\end{bmatrix}\\ &\xrightarrow[r_3-(-\lambda^2+5\lambda-6)r_2]{c_3-(\lambda-3)c_2}\begin{bmatrix}1&0&0\\0&1&0\\0&0&(\lambda-2)(\lambda-3)^2\end{bmatrix} \end{aligned} λEA= λ1201λ4001λ3 c1c2 1λ40λ12001λ3 c2(λ1)c1 r2(λ4)r1 1000λ2+5λ6001λ3 c2c3 10001λ30λ2+5λ60 c3(λ3)c2 r3(λ2+5λ6)r2 10001000(λ2)(λ3)2
所以, 矩阵 A A A 的初等因子为 λ − 2 , ( λ − 3 ) 2 \lambda-2,(\lambda-3)^2 λ2,(λ3)2, A A A 的 Jordan 标准形 J = [ 2 0 0 0 3 1 0 0 3 ] . \boldsymbol{J}=\begin{bmatrix}2&0&0\\0&3&1\\0&0&3\end{bmatrix}. J= 200030013 .

例 1.28 A = ( 3 1 1 − 1 1 − 1 1 1 3 ) A=\begin{pmatrix}3&1&1\\-1&1&-1\\1&1&3\end{pmatrix} A= 311111113 的最小多项式.
解 因为 λ E − A \lambda\boldsymbol{E}-\boldsymbol{A} λEA
= ( λ − 3 − 1 − 1 1 λ − 1 1 − 1 − 1 λ − 3 ) → ( 1 λ − 1 1 λ − 3 − 1 − 1 − 1 − 1 λ − 3 ) → ( 1 0 0 0 − λ 2 + 4 λ − 4 − λ + 2 0 λ − 2 λ − 2 ) \begin{aligned}= \begin{pmatrix}\lambda-3&-1&-1\\1&\lambda-1&1\\-1&-1&\lambda-3\end{pmatrix}\to \begin{pmatrix}1&\lambda-1&1\\\lambda-3&-1&-1\\-1&-1&\lambda-3\end{pmatrix}\to \begin{pmatrix}1&0&0\\0&-\lambda^2+4\lambda-4&-\lambda+2\\0&\lambda-2&\lambda-2\end{pmatrix}\end{aligned} = λ3111λ1111λ3 1λ31λ11111λ3 1000λ2+4λ4λ20λ+2λ2
所以 A A A 的初等因子 λ − 2 , λ − 2 , λ − 3 \lambda-2,\lambda-2,\lambda-3 λ2,λ2,λ3 A A A 的最小多项式 m A ( λ ) = ( λ − 2 ) ( λ − 3 ) m_{A}(\lambda)=(\lambda-2)(\lambda-3) mA(λ)=(λ2)(λ3)

2. 矩阵函数的定义 简单计算矩阵函数

特征多项式 χ A ( λ ) = ∣ λ E − A ∣ \chi_A(\lambda)=|\lambda E-A| χA(λ)=λEA 的根系(连重数)称为方阵 A A A S p e c A \mathrm {Spec}A SpecA.
m A ( λ ) m_A(\lambda) mA(λ) 的根系(连重数)称为方阵 A A A简谱 R s p e c A \mathrm{Rspec}A RspecA.

现对 f ( λ ) f(\lambda) f(λ) 定义 f ( A ) . f(\boldsymbol{A}). f(A). 假设 f ( λ ) f(\lambda) f(λ) 在各 λ i \lambda_i λi 处有直到 m i − 1 m_i-1 mi1 阶的导数——简称为 f ( λ ) f(\lambda) f(λ) Λ A \Lambda_\mathrm{A} ΛA 上有意义.

矩阵函数的第一种定义 对函数 f ( λ ) f(\lambda) f(λ) , 多项式 r ( λ ) r(\lambda) r(λ) 是与 f ( λ ) f(\lambda) f(λ) A \boldsymbol{A} A简谱处的值全部相等的多项式 r ( Λ A ) = f ( Λ A ) r(\Lambda_{A})=f(\Lambda_{A}) r(ΛA)=f(ΛA), 则定义 f ( A ) = r ( A ) f(\boldsymbol{A})=r(\boldsymbol{A}) f(A)=r(A), 并称 r ( λ ) r(\lambda) r(λ) f ( A ) f(\boldsymbol{A}) f(A)定义多项式

定义多项式不唯一,两定义多项式之差是 m A ( λ ) m_{A}(\lambda) mA(λ) 的倍数,次数小于 m A ( λ ) m_{A}(\lambda) mA(λ) 的定义多项式唯一

矩阵函数的第二种定义 设复函数 f ( z ) f(z) f(z) 在开圆域 ∣ z ∣ < R |z|<R z<R 内解析,即 f ( z ) f(z) f(z) 在此开圆域内可展开成幂级数 f ( z )   =   ∑ m   =   0 ∞ c m z m   , f(z)\:=\:\sum_{m\:=\:0}^\infty c_mz^m\:, f(z)=m=0cmzm, 则若 ρ ( A ) < R \rho (A)<R ρ(A)<R,就有
f ( A )   =   ∑ m   =   0 ∞ c m   ( A ) m   . f(A)\:=\:\sum_{m\:=\:0}^{\infty}c_{m}\:(A)^{m}\:. f(A)=m=0cm(A)m.

当函数 f ( z ) f(z) f(z) 和矩阵 A A A 满足第二种定义时 f ( A ) f(A) f(A)两种定义一致.

比如 ∣ a ∣ < R |a|<R a<R 的Jordan矩阵 J J J
f ( J ) = ∑ m = 1 ∞ a m J m = ( f ( a ) f ′ ( a ) 1 ! f ′ ′ ( a ) 2 ! ⋯ f ( p − 1 ) ( a ) ( p − 1 ) ! f ( a ) ⋱ ⋱ ⋱ f ′ ( a ) 1 ! f ( a ) ) f(J)=\left.\sum_{m=1}^{\infty}a_{m}J^{m}=\left(\begin{array}{cccccc}f(a)&\dfrac{f^{\prime}(a)}{1!}&\dfrac{f^{\prime\prime}(a)}{2!}&\cdots&\dfrac{f^{(p-1)}(a)}{(p-1)!}\\&f(a)&&&\\&&\ddots&\ddots&\\&&&\ddots&\dfrac{f^{\prime}(a)}{1!}\\&&&&f(a)\end{array}\right.\right) f(J)=m=1amJm= f(a)1!f(a)f(a)2!f′′(a)(p1)!f(p1)(a)1!f(a)f(a)

证 记 H = J − a E H=J-aE H=JaE, 则 J m = ( H + a E ) m = ∑ i = 0 m C m i a m − i H i = ∑ i = 0 ∞ C m i a m − i H i ( 当 i > m y , C m i = 0 ) J^{m}=(H+aE)^{m}=\sum_{i=0}^{m}C_{m}^{i}a^{m-i}H^{i} =\sum_{i=0}^{\infty}C_{m}^{i}a^{m-i}H^{i}(\text{当}i>my,C_{m}^{i}=0) Jm=(H+aE)m=i=0mCmiamiHi=i=0CmiamiHi(i>my,Cmi=0)
∑ m = 0 ∞ a m J m = ∑ m = 0 ∞ a m ∑ i = 0 ∞ C m i a m − i H i = ∑ i = 0 ∞ ( ∑ m = 0 ∞ a m C m i a m − i ) H i = ∑ i = 0 ∞ 1 i ! H i ( ∑ m = 0 ∞ a m m ( m + 1 ) ⋯ ( m − i + 1 ) a m − i ) = ∑ i = 0 ∞ 1 i ! H i f ( i ) ( a ) i ≥ p  时  H i = 0 \qquad\qquad\qquad\qquad \begin{aligned}\sum_{m=0}^{\infty}a_{m}J^{m}&=\sum_{m=0}^{\infty}a_{m}\sum_{i=0}^{\infty}C_{m}^ia^{m-i}H^{i}=\sum_{i=0}^{\infty}(\sum_{m=0}^{\infty}a_{m}C_{m}^{i}a^{m-i})H^{i}\\ &=\sum_{i=0}^{\infty}\frac{1}{i!}H^{i}(\sum_{m=0}^{\infty}a_{m}m(m+1)\cdots(m-i+1)a^{m-i})\\&=\sum_{i=0}^{\infty}\frac{1}{i!}H^{i}f^{(i)}(a)\quad i\geq p~\text{时}~H^{i}=0 \end{aligned} m=0amJm=m=0ami=0CmiamiHi=i=0(m=0amCmiami)Hi=i=0i!1Hi(m=0amm(m+1)(mi+1)ami)=i=0i!1Hif(i)(a)ip  Hi=0

例 1.1.4 A = ( 1 4 3 2 ) A=\begin{pmatrix}1&4\\3&2\end{pmatrix} A=(1342),求 e A e^{A} eA .
f A ( λ ) = ∣ λ − 1 − 4 − 3 λ − 2 ∣ = ( λ − 5 ) ( λ + 2 ) . f_{A}(\lambda)=\left|\begin{matrix}\lambda-1&-4\\-3&\lambda-2\end{matrix}\right|=(\lambda-5)(\lambda+2). fA(λ)= λ134λ2 =(λ5)(λ+2). 则最小多项式 m A ( λ ) m_{A}(\lambda) mA(λ) 也是 ( λ − 5 ) ( λ + 2 ) (\lambda-5)(\lambda+2) (λ5)(λ+2) .
由小于 m A ( λ ) m_{A}(\lambda) mA(λ) 的定义多项式唯一 ,设定义多项式 r ( a ) = a λ + b r(a)=a\lambda+b r(a)=+b, 则 { r ( 5 ) = 5 a + b = e 5 r ( − 2 ) = − 2 a + b = e − 2 \begin{cases}r(5)=5a+b=e^{5}\\r(-2)=-2a+b=e^{-2}\end{cases} {r(5)=5a+b=e5r(2)=2a+b=e2
⇒ { a = 1 7 ( e 5 − e − 2 ) b = 1 7 ( 2 e 5 + 5 e − 2 ) ⇒ e A = r ( A ) = 1 7 ( e 5 − e − 2 ) A + 1 7 ( 2 e 5 + 5 e − 2 ) I \begin{aligned}&\Rightarrow\begin{cases}a=\frac{1}{7}(e^{5}-e^{-2})\\b=\frac{1}{7}(2e^{5}+5e^{-2})\end{cases}&\Rightarrow e^{A}=r(A)=\frac{1}{7}(e^{5}-e^{-2})A+\frac{1}{7}(2e^{5}+5e^{-2})I\end{aligned} {a=71(e5e2)b=71(2e5+5e2)eA=r(A)=71(e5e2)A+71(2e5+5e2)I

例 1.1.5 A = ( 0 − 1 4 4 ) A=\begin{pmatrix}0&-1\\4&4\end{pmatrix} A=(0414) , 求 arcsin ⁡ A 4 \arcsin\dfrac{A}{4} arcsin4A.
f A ( λ ) = ∣ λ 1 − 4 λ − 4 ∣ = ( λ − 2 ) 2 f_{A}(\lambda)=\begin{vmatrix}\lambda&1\\-4&\lambda-4\end{vmatrix}=(\lambda-2)^{2} fA(λ)= λ41λ4 =(λ2)2, D 1 ( x ) = 1 , D 2 ( x ) = ( λ − 2 ) 2 = d 2 ( x ) = m A D_{1}(x)=1,D_{2}(x)=(\lambda-2)^{2}=d_{2}(x)=m_{A} D1(x)=1,D2(x)=(λ2)2=d2(x)=mA
设  r ( x ) = a λ + b ,则 { r ( 2 ) = 2 a + b = arcsin ⁡ 2 4 ∗ π 6 r ′ ( 2 ) = a = 1 1 − ( 2 4 ) 2 ∗ 1 4 = 3 6 ⇒ b = π 6 − 2 3 6 arcsin ⁡ A 4 = r ( A ) = 3 6 A + π − 2 3 6 I \begin{aligned}&\text{设}~r(x)=a\lambda+b,\text{则}\begin{cases}r(2)=2a+b=\arcsin\dfrac{2}{4}*\dfrac{\pi}{6}\\r^{\prime}(2)=a=\dfrac{1}{\sqrt{1-(\frac{2}{4})^{2}}}*\dfrac14=\dfrac{\sqrt{3}}{6}\end{cases} \Rightarrow b=\frac{\pi}{6}-2\dfrac{\sqrt{3}}{6}\\ &\arcsin\frac{A}{4}= r(A)=\frac{\sqrt{3}}{6}A+\frac{\pi-2\sqrt{3}}{6}I\end{aligned}  r(x)=+b r(2)=2a+b=arcsin426πr(2)=a=1(42)2 141=63 b=6π263 arcsin4A=r(A)=63 A+6π23 I

例 1.1.6 A A A 可逆, f ( λ ) = 1 λ f(\lambda)=\frac{1}{\lambda} f(λ)=λ1, 则 f ( A ) = A − 1 f(A)=A^{-1} f(A)=A1
解 记 f A ( λ ) = a ( λ g ( λ ) − 1 ) f_{A}(\lambda)=a(\lambda g(\lambda)-1) fA(λ)=a(λg(λ)1),则 λ g ( λ ) \lambda g(\lambda) λg(λ) 1 1 1 R s p e c A \mathrm{RspecA} RspecA 处全相等
⇒ g ( λ ) 与 1 λ 在  R s p e c A  处全相等 ⇒ g ( λ ) = 1 λ ⇒ f ( A ) = g ( A ) = A − 1 \begin{aligned}&\Rightarrow g(\lambda)\text{与}\frac{1}{\lambda}{在~\mathrm{RspecA}~处全相等}\Rightarrow g(\lambda)=\frac{1}{\lambda}\Rightarrow f(A)=g(A)=A^{-1}\end{aligned} g(λ)λ1 RspecA 处全相等g(λ)=λ1f(A)=g(A)=A1

若当块的幂级数 矩阵函数的初等因子? 矩阵序列 矩阵级数

3. 张量积 矩阵拉长AXB=C AX-XB=C唯一解

张量积 A ⊗ B = ( a 11 B ⋯ a 1 n B ⋮ ⋮ a m 1 B ⋯ a m n B ) \left.A\otimes B = \left(\begin{matrix}a_{11}B&\cdots&a_{1n}B\\\vdots&&\vdots\\a_{m1}B&\cdots&a_{mn}B\end{matrix}\right.\right) AB= a11Bam1Ba1nBamnB 的性质

(7) ( A ⊗ B ) ( C ⊗ D ) = A C ⊗ B D . (\boldsymbol A\otimes \boldsymbol B)(\boldsymbol C\otimes \boldsymbol D)=\boldsymbol {AC}\otimes \boldsymbol {BD}. (AB)(CD)=ACBD.
在下列性质 (8) ~ (11) 中, A A A B B B 分别是 m m m 阶和 n n n 阶方阵.
(8)   ( A ⊗ B ) − 1 = A − 1 ⊗ B − 1 ~(\boldsymbol{A}\otimes \boldsymbol{B})^{-1}=\boldsymbol{A}^{-1}\otimes \boldsymbol{B}^{-1}  (AB)1=A1B1
(9)   det ⁡ ( A ⊗ B ) = ( det ⁡ A ) n ( det ⁡ B ) m \:\det(\boldsymbol{A}\otimes\boldsymbol{B})=(\det\boldsymbol{A})^n(\det\boldsymbol{B})^m det(AB)=(detA)n(detB)m
       ~~~~~~       证 由 A ⊗ B = ( A ⊗ I n ) ( I m ⊗ B ) \boldsymbol{A}\otimes \boldsymbol{B}=(\boldsymbol{A}\otimes \boldsymbol{I_n})(\boldsymbol{I_m}\otimes \boldsymbol{B}) AB=(AIn)(ImB)
(10) rank ⁡ ( A ⊗ B ) = ( rank ⁡ A ) ( rank ⁡ B ) \operatorname{rank}(\boldsymbol{A}\otimes\boldsymbol{B})=(\operatorname{rank}\boldsymbol{A})(\operatorname{rank}\boldsymbol{B}) rank(AB)=(rankA)(rankB) .
       ~~~~~~       证 由 U A V = ( I a O O O ) \boldsymbol {UAV}=\left(\begin{matrix}\boldsymbol{I}_a&\boldsymbol{O}\\ \boldsymbol{O}&\boldsymbol{O}\end{matrix}\right) UAV=(IaOOO) R B S = ( I b O O O ) \boldsymbol {RBS}=\left(\begin{matrix}\boldsymbol{I}_b&\boldsymbol{O}\\ \boldsymbol{O}&\boldsymbol{O}\end{matrix}\right) RBS=(IbOOO).
       ~~~~~~       于是 ( U ⊗ R ) ( A ⊗ B ) ( V ⊗ S )   =   ( U A V ) ⊗ ( R B S )   (\boldsymbol U\otimes \boldsymbol R)(\boldsymbol A\otimes \boldsymbol B)(\boldsymbol V\otimes \boldsymbol S)\:=\:(\boldsymbol {UAV})\otimes(\boldsymbol {RBS})\: (UR)(AB)(VS)=(UAV)(RBS)
(11) S p e c ( A ⊗ B )   =   { λ i μ j   ∣   i   =   1 , ⋯   , m   ; j   =   1 , ⋯   , n   }   . \mathrm{Spec}(\boldsymbol A\otimes \boldsymbol B)\:=\:\{\lambda_i\mu_j\:|\:i\:=\:1,\cdots,m\:;j\:=\:1,\cdots,n\:\}\:. Spec(AB)={λiμji=1,,m;j=1,,n}.
特别地, t r ( A ⊗ B ) = ( t r A ) ( t r B ) \mathrm tr(\boldsymbol A\otimes \boldsymbol B) = ( \mathrm tr\boldsymbol A) ( \mathrm tr\boldsymbol B) tr(AB)=(trA)(trB). 另外,若 A \boldsymbol A A B \boldsymbol B B 都相似于对角阵,则 A ⊗ B \boldsymbol A\otimes \boldsymbol B AB 也相似于对角阵。

证 设 R A R − 1 = T A , S B S − 1 = T B \boldsymbol {RAR^{-1}=T_A}, \boldsymbol {SBS^{-1}=T_B} RAR1=TA,SBS1=TB , 其中 T A , T B \boldsymbol T_A,\boldsymbol T_B TA,TB 都是上三角方阵,
( R ⊗ S ) ( A ⊗ B ) ( R ⊗ S ) − 1 = ( R A R − 1 ) ⊗ ( S B S − 1 ) = T A ⊗ T B . (\boldsymbol R\otimes \boldsymbol S)(\boldsymbol A\otimes \boldsymbol B)(\boldsymbol R\otimes \boldsymbol S)^{-1}=(\boldsymbol {RAR^{-1}})\otimes(\boldsymbol {SBS^{-1}})=\boldsymbol T_{A}\otimes \boldsymbol T_{B}. (RS)(AB)(RS)1=(RAR1)(SBS1)=TATB.
T A , T B \boldsymbol T_A ,\boldsymbol T_B TA,TB 都是对角阵时, T A ⊗ T B \boldsymbol T_A\otimes \boldsymbol T_B TATB 也是对角阵.

A ^ \widehat{A} A A = ( a i j ) A=(a_{ij}) A=(aij)拉长向量 A ^ = ( a 11 , ⋯   , a 1 n , a 21 , ⋯   , a 2 n , ⋯   ) T \hat{A}=(a_{11},\cdots, a_{1n},a_{21},\cdots ,a_{2n},\cdots)^{T} A^=(a11,,a1n,a21,,a2n,)T

定理 2.2.1 A X B ^ = ( A ⊗ B T ) ⋅ X ^ \widehat{AXB}=(A\otimes B^{T})\cdot\widehat{X} AXB =(ABT)X

证:显然 A X B ^ \widehat{AXB} AXB 的每个分量都是 X ^ \widehat{X} X 的线性组合。
A = ( a i j ) m × n A=\left(a_{ij}\right)_{m\times n} A=(aij)m×n , X = ( x i j ) n × p X=\left(x_{ij}\right)_{n\times p} X=(xij)n×p , B = ( b i j ) p × q B=\left(b_{ij}\right)_{p\times q} B=(bij)p×q , X = ( X 1 ⋮ X n ) X=\left(\begin{array}{c}X_1\\\vdots\\X_n\end{array}\right) X= X1Xn ,则 X ^ = ( X 1 T ⋮ X n T ) \widehat{X}=\left(\begin{array}{c}X_1^T\\\vdots\\X_n^T\end{array}\right) X = X1TXnT .
A X B = ( ( a 11 X 1 + ⋯ + a 1 n X n ) B ⋮ ( a m 1 X 1 + ⋯ + a m n X n ) B ) AXB=\begin{pmatrix}(a_{11}X_1+\cdots+a_{1n}X_n)B\\\vdots\\(a_{m1}X_1+\cdots+a_{mn}X_n)B\end{pmatrix} AXB= (a11X1++a1nXn)B(am1X1++amnXn)B
从而
A X B ^ = ( ( a 11 X 1 + ⋯ + a 1 n X n ) B , ⋯   , ( a m 1 X 1 + ⋯ + a m n X n ) B ) T = ( B T ( a 11 X 1 T + ⋯ + a 1 n X n T ) ⋮ B T ( a m 1 X 1 T + ⋯ + a m n X n T ) ) = ( a 11 B T ⋯ a 1 n B T ⋮ ⋮ a m 1 B T ⋯ a m n B T ) ( X 1 T ⋮ X n T ) \begin{aligned} \widehat{AXB}&=(\begin{array}{cccc}{(a_{11}X_{1}+\cdots+a_{1n}X_{n})B,}&{\cdots,}&{(a_{m1}X_{1}+\cdots+a_{mn}X_{n})B}\\\end{array})^{T}\\ \\ &\left.=\left(\begin{array}{c}B^T\left(a_{11}X_1^T+\cdots+a_{1n}X_n^T\right)\\\vdots\\ B^T\left(a_{m1}X_1^T+\cdots+a_{mn}X_n^T\right)\end{array}\right.\right) =\left(\begin{array}{ccc}a_{11}B^T&\cdots&a_{1n}B^T\\\vdots&\vdots\\a_{m1}B^T&\cdots&a_{mn}B^T\end{array}\right)\left(\begin{array}{c}X_1^T\\\vdots\\X_n^T\end{array}\right) \\ \end{aligned} AXB =((a11X1++a1nXn)B,,(am1X1++amnXn)B)T= BT(a11X1T++a1nXnT)BT(am1X1T++amnXnT) = a11BTam1BTa1nBTamnBT X1TXnT

由拉长公式, A X B = C ⇔ A X B ^ = C ^ ⇔ ( A ⊗ B T ) X ^ = C ^ AXB=C\Leftrightarrow\widehat{AXB}=\widehat{C}\Leftrightarrow(A\otimes B^{T})\widehat{X}=\widehat{C} AXB=CAXB =C (ABT)X =C

习题: 求矩阵 P P P 使得 A B ^ = P B ^ \widehat{AB}=P\widehat{B} AB =PB , 矩阵 Q Q Q 使得 A B ^ = Q A ^ \widehat{AB}=Q\widehat{A} AB =QA
A B E ^ = ( A ⊗ E T ) B ^ \widehat{ABE}=(A\otimes E^{T})\widehat{B} ABE =(AET)B , E A B ^ = ( E ⊗ B T ) A ^ \widehat{EAB}=(E\otimes B^{T})\widehat{A} EAB =(EBT)A

A ∈ C m × m \boldsymbol A\in \mathbf C^{m\times m} ACm×m , B ∈ C n × n \boldsymbol B\in \mathbf C^{n\times n} BCn×n , C ∈ C m × n \boldsymbol C\in \mathbf C^{m\times n} CCm×n , 且 X ∈ C m × n \boldsymbol X\in \mathbf C^{m\times n} XCm×n 是未知矩阵

矩阵方程 A X − X B = C \boldsymbol {AX-XB=C} AXXB=C 有唯一解 ⟺ A \Longleftrightarrow \mathbf A A B \mathbf B B 无公共特征值
A X − X B = C ⇔ ( A X − X B ) ^ = C ^ ⇔ A X ^ − X B ^ = C ^ ⇔ A X I n ^ − I m X B ^ = C ^ ⇔ ( A ⊗ I n − I m ⊗ B T ) X ^ = C ^ , \begin{gathered} \boldsymbol {AX-XB}=\boldsymbol C\Leftrightarrow \widehat{(\boldsymbol {AX-XB})}=\widehat{\boldsymbol C}\Leftrightarrow \widehat{\boldsymbol {AX}}-\widehat{\boldsymbol {XB}}=\widehat{\boldsymbol C}\\ \Leftrightarrow \widehat{\boldsymbol {AXI_n}}-\widehat{\boldsymbol {I_mXB}}=\widehat{\boldsymbol C} \Leftrightarrow (\boldsymbol A\otimes \boldsymbol {I_n}-\boldsymbol {I_m}\otimes \boldsymbol B^\mathrm{T})\widehat{\boldsymbol X}=\widehat{\boldsymbol C}, \end{gathered} AXXB=C(AXXB) =C AX XB =C AXIn ImXB =C (AInImBT)X =C ,

故方程 A X − X B = C \boldsymbol {AX-XB=C} AXXB=C 还可以写成线性方程组 ( A ⊗ I n − I m ⊗ B T ) X ^ = C ^ (\boldsymbol A\otimes \boldsymbol {I_n}-\boldsymbol {I_m}\otimes \boldsymbol B^\mathrm{T})\widehat{\boldsymbol X}=\widehat{\boldsymbol C} (AInImBT)X =C ,它的系数矩阵是 m n mn mn 阶方阵。
若记 S p e c A = { λ 1 , ⋯   , λ m } \mathrm{Spec}\boldsymbol {A}= \left \{ \lambda_1, \cdots , \lambda_m\right \} SpecA={λ1,,λm} , S p e c B = { μ 1 , ⋯   , μ n } \mathrm{Spec}\boldsymbol{B}=\left \{ \mu_1, \cdots , \mu_n\right \} SpecB={μ1,,μn} ,
\qquad\qquad \qquad\qquad S p e c ( A ⊗ I n − I m ⊗ B T )   = { λ i − μ j   ∣   i = 1 , ⋯   , m ; j = 1 , ⋯   , n }   . \mathrm{Spec}(\mathbf{A}\otimes\mathbf{I}_{n}-\mathbf{I}_{m}\otimes\mathbf{B}^{\mathrm{T}})\:=\{\lambda_{i}-\mu_{j}\:|\:i=1,\cdots,m;j=1,\cdots,n\}\:. Spec(AInImBT)={λiμji=1,,m;j=1,,n}.
  ~  证: 设 S − 1 A S = J A , R − 1 B R = J B S^{-1}AS=J_{A},R^{-1}BR=J_{B} S1AS=JA,R1BR=JB ,
( S − 1 ⊗ R − 1 ) ( A ⊗ I n − I m ⊗ B T ) ( S ⊗ R ) = ( S − 1 A S ) ⊗ R − 1 I n R − ( S − 1 I m S ) ⊗ ( R − 1 B T R ) = J A ⊗ I n − I m ⊗ J B T     \begin{aligned}&(S^{-1}\otimes R^{-1})(A\otimes I_{n}- I_{m}\otimes B^{T})(S\otimes R)\\&=(S^{-1}AS)\otimes R^{-1}I_{n}R-(S^{-1}I_{m}S)\otimes(R^{-1}B^{T}R)\\&=J_{A}\otimes I_{n}-I_{m}\otimes J_{B^{T}}\end{aligned}~~~ (S1R1)(AInImBT)(SR)=(S1AS)R1InR(S1ImS)(R1BTR)=JAInImJBT   再看三角阵的全部对角元。
矩阵方程 A X − X B = C \boldsymbol {AX-XB=C} AXXB=C 有唯一解 ⟺ ( A ⊗ I n − I m ⊗ B T ) X ^ = C ^ \Longleftrightarrow(\mathbf{A}\otimes\mathbf{I}_{n}-\mathbf{I}_{m}\otimes\mathbf{B}^{\mathrm{T}})\widehat{\mathbf X}=\widehat{\mathbf C} (AInImBT)X =C 有唯一解
⟺ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\Longleftrightarrow 系数行列式不为 0 ⟺ A 0\Longleftrightarrow \mathbf A 0A B \mathbf B B 无公共特征值

推论 2.3.2 A = ( A 1 ⋱ A l ) \boldsymbol A=\begin{pmatrix}\boldsymbol A_1&&\\&\ddots\\&&\boldsymbol A_l\end{pmatrix} A= A1Al B = ( B 11 ⋯ B 1 l ⋮ B l 1 ⋯ B l l ) \boldsymbol B=\begin{pmatrix}\boldsymbol B_{11}&\cdots&\boldsymbol B_{1l}\\\varvdots\\\boldsymbol B_{l1}&\cdots&\boldsymbol B_{ll}\end{pmatrix} B= B11Bl1B1lBll
其中(1)当 i ≠ j i\neq j i=j 时, A i , A j \boldsymbol A_i,\boldsymbol A_j Ai,Aj无公共特征值,(2) A B = B A \boldsymbol {AB=BA} AB=BA
B \boldsymbol B B 的所有非对角块部是 0 0 0

证: A B = B A ⇒ A i B i j = B i j A i ⇒ B i j 是 A i X − X A j = 0 的解 又 i ≠ j 时 A i 与 A j 无公共特征值 A i X − X A j = 0 有唯一解 ⇒ 只有零解 ⇒ B i j = 0 i ≠ j AB=BA\Rightarrow A_iB_{ij}=B_{ij}A_i\Rightarrow B_{ij}\text{是}A_{i}X-XA_{j}=0\text{的解}\\\text{又}i\neq j{时}A_i\text{与}A_j\text{无公共特征值}\\A_iX-XA_j=0\text{有唯一解}\Rightarrow 只有零解\Rightarrow B_{ij}=0\quad i\neq j AB=BAAiBij=BijAiBijAiXXAj=0的解i=jAiAj无公共特征值AiXXAj=0有唯一解只有零解Bij=0i=j

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值