具体进阶方法可以参考链接:https://www.bilibili.com/video/BV17E41147cj/
下面咱来说一下模糊控制的一些小故事(引自百科):
一、历史:
Zadeh创立的 模糊数学,对不明确系统的控制有极大的贡献,自七十年代以后,一些实用的模糊控制器的相继出现,使得我们在控制领域中又向前迈进了一大步。
模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术 。
1965年,美国的L.A.Zadeh创立了模糊集合论;1972年他提出了"A rationale for Fuzzy Control",接着在1973年,他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首次根据模糊控制语句组成模糊控制器,并将它应用于锅炉和蒸汽机的控制,获得了实验室的成功。这一开拓性的工作标志着模糊控制论的诞生。
模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既有系统化的理论,又有大量的实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是日本,得到了迅速而广泛的推广应用。
近20多年来,模糊控制不论在理论上还是技术上都有了长足的进步,成为自动控制领域一个非常活跃而又硕果累累的分支。
其典型应用涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制。
二、定义
利用模糊数学的基本思想和理论的控制方法。在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键。系统动态的信息越详细,则越能达到精确控制的目的。
然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。
三、基本原理
为了实现对直线电机运动的高精度控制,系统采用全闭环的控制策略,但在系统的速度环控制中,因为负载直接作用在电机而产生的扰动,如果仅采用 PID 控制,则很难满足系统的快速响应需求。由于模糊控制技术具有适用范围广、对时变负载具有一定的鲁棒性的特点,而直线电机伺服控制系统又是一种要求要具有快速响应性并能够在极短时间内实现动态调节的系统,所以本文考虑在速度环设计了PID模糊控制器,利用模糊控制器对电机的速度进行控制,并同电流环和位置环的经典控制策略一起来实现对直线电机的精确控制。
模糊控制器包括四部分:
(1)模糊化。主要作用是选定模糊控制器的输入量,并将其转换为系统可识别的模糊量,具体包含以下三步:
第一,对输入量进行满足模糊控制需求的处理;
第二,对输入量进行尺度变换;
第三,确定各输入量的模糊语言取值和相应的隶属度函数。
(2)规则库。根据人类专家的经验建立模糊规则库。模糊规则库包含众多控制规则,是从实际控制经验过渡到模糊控制器的关键步骤。
(3)模糊推理。主要实现基于知识的推理决策。
(4)解模糊。主要作用是将推理得到的控制量转化为控制输出。
举例:速度环模糊控制器设计
首先,将速度误差E和偏差变化率 ΔE都进行模糊量化处理,将量化后的数据作为模糊控制器的两个输入;然后,根据模糊规则进行模糊推理,并将推理后的模糊值解模糊化后再乘以比例因子转换为ΔKp、ΔKi、ΔKd;第三,将步骤2得到的值与原值做加运算得到最新的一组 PID 值;最后,根据新的PID值求得控制程度u (t),完成控制任务。
四、概念
一般控制系统的架构包含了五个主要部分,即:定义变量、模糊化、知识库、逻辑判断及反模糊化,下文将对每一部分做简单的说明:
定义变量
也就是决定程序被观察的状况及考虑控制的动作,例如在一般控制问题上,输入变量有输出误差E与输出误差变化率EC,而模糊控制还将控制变量作为下一个状态的输入U。其中E、EC、U统称为模糊变量。
模糊化
将输入值以适当的比例转换到论域的数值,利用口语化变量来描述测量物理量的过程,根据适合的语言值(linguistic value)求该值相对的隶属度,此口语化变量称为模糊子集合(fuzzy subsets)。
知识库
包括数据库(data base)与规则库(rule base)两部分,其中数据库提供处理模糊数据的相关定义;而规则库则藉由一群语言控制规则描述控制目标和策略。
逻辑判断
模仿人类下判断时的模糊概念,运用模糊逻辑和模糊推论法进行推论,得到模糊控制讯号。该部分是模糊控制器的精髓所在。
解模糊化
解模糊化(defuzzify):将推论所得到的模糊值转换为明确的控制讯号,做为系统的输入值。
五、控制规则
控制规则是模糊控制器的核心,它的正确与否直接影响到控制器的性能,其数目的多少也是衡量控制器性能的一个重要因素,下面对控制规则做进一步的探讨。
规则来源
模糊控制规则的取得方式:
(1) 专家的经验和知识
模糊控制也称为控制系统中的 [4] 专家系统,专家的经验和知识在其设计上有余力的线索。人类在日常生活常中判断事情,使用语言定性分析多于数值定量分析;而模糊控制规则提供了一个描述人类的行为及决策分析的自然架构;专家的知识通常可用if….then的型式来表述。
藉由询问经验丰富的专家,获得系统的知识,并将知识改为if….then的型式,如此便可构成模糊控制规则。除此之外,为了获得最佳的系统性能,常还需要多次使用 [5] 试误法,以修正模糊控制规则。
(2) 操作员的操作模式
现在流行的专家系统,其想法只考虑知识的获得。专家可以巧妙地操作复杂的控制对象,但要将专家的诀窍加以逻辑化并不容易,这就需要在控制上考虑技巧的获得。许多工业系统无法以一般的控制理论做正确的控制,但是熟练的操作人员在没有数学模式下,却能够成功地控制这些系统:这启发我们记录操作员的操作模式,并将其整理为if….then的型式,可构成一组控制规则。
(3) 学习
为了改善模糊控制器的性能,必须让它有自我学习或自我组织的能力,使模糊控制器能够根据设定的目标,增加或修改模糊控制规则。
规则型式
模糊控制规则的形式主要可分为二种:
(1) 状态评估模糊控制规则
状态评估(state evaluation)模糊控制规则类似人类的直觉思考,它被大多数的模糊控制器所使用,其型式如下:
Ri:if x1 is Ai1 and x2 is Ai2 …. and xn is Ain
then y is Ci
其中x1,x2,…….,xn及y为语言变量或称为模糊变量,代表系统的态变量和控制变量;Ai1,Ai2,….,Ain及Ci为语言值,代表论域中的 模糊集合。该形式还有另一种表示法,是将后件部改为系统状态变量的函数,其形式如下:
Ri:if x1 is Ai1 and x2 is Ai2 …. and xn is Ain
then y=f1(x1,x2,…….,xn)
(2)目标评估模糊控制规则
目标评估(object evaluation)模糊控制规则能够评估控制目标,并且预测未来控制信号,其形式如下:
Ri:if(U is Ci→(x is A1 and y is B1))then U is Ci
六、特点
-
简化系统设计的复杂性,特别适用于非线性、时变、滞后、模型不完全系统的控制。
-
不依赖于被控对象的精确数学模型。
-
利用控制法则来描述系统变量间的关系。
-
不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。
-
模糊控制器是一语言控制器,便于操作人员使用自然语言进行人机对话。
-
模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的鲁棒性(Robustness)、适应性及较佳的容错性(Fault Tolerance)。
七、函数型式
Mamdani教授最初所用的模糊变量分为连续型和离散型两种型式,因此隶属度函数的型式也可以分为连续型与离散型两种。由于语言变量及相对应隶属度函数选择的不同,将形成许多不同的模糊控制器架构;下面将对各隶属度函数的型式加以介绍:
1. 连续型隶属度函数
模糊控制器中常见的连续型隶属度函数有下列三种:
(1)吊钟形(2)三角形(3)梯形
2. 离散型隶属度函数
Mamdani教授除了使用连续型全集合之外,也使用了由13个元素所构成的离散合。由于用微处理机计算时使用整数比用〔0,1〕之间的小数更方便,模糊集合的隶属度均以整数表示。
模糊控制理论发展之初,大都采用吊钟形的隶属度函数,而近几年几乎都已改用三角形的隶属度函数,这是由于三角形隶属度函数计算比较简单,性能与吊钟形几乎没有差别。
八、缺点
1.模糊控制的设计尚缺乏系统性,这对复杂系统的控制是难以奏效的。难以建立一套系统的模糊控制理论,以解决模糊控制的机理、稳定性分析、系统化设计方法等一系列问题;
2.如何获得模糊规则及隶属函数即系统的设计办法,完全凭经验进行;
3.信息简单的模糊处理将导致系统的控制精度降低和动态品质变差。若要提高精度就必然增加量化级数,导致规则搜索范围扩大,降低决策速度,甚至不能进行实时控制;
4.如何保证模糊控制系统的稳定性即如何解决模糊控制中关于稳定性和鲁棒性问题还有待解决。