第1章:卷积神经网络:从欧氏空间到非欧氏空间

卷积神经网络:从欧氏空间到非欧氏空间

人工神经网络发展浪潮

第三次浪潮——卷积神经网络
加拿大多伦多大学教授,机器学习领域泰斗Geoffery Hinton及其学生在《科学》上发表了一篇论文,开启了深度学习在学术界和工业界的新浪潮!
在这里插入图片描述

卷积计算与神经网络结构

卷积定义
f ( x ) f(x) f(x) g ( x ) g(x) g(x) R R R上的两个可积函数,连续形式卷积定义如下

离散空间卷积
y n = x × w = y_n = x \times w= yn=x×w=

卷积计算与神经网络结构

基本概念——卷积

  • 卷积核大小 (Kernel Size): 卷积操作感受野,在二维卷积中,通常设置为3,即卷积核大小为3×3
  • 步长 (Stride): 卷积核遍历图像时的步幅大小,默认值通常设置为1
  • 边界扩充 (Padding): 样本边界的处理方式
  • 输入与输出通道 (Channels): 构建卷积层时需定义输入通道数量 I I I,和输出通道数量 O O O,每个网络层的参数量为 I × O × K I×O×K I×O×K(K为卷积核的参数个数)

基本概念——池化、全连接

  • 池化层
    • 特殊形式卷积
    • 降维、减少数据计算量,减缓过拟合,特征不变性(平移、尺度)
  • 全连接层
    • 模型输出层
    • 分类、回归

多层卷积神经网络示例

  • 卷积核大小为5*5,步长为1,不扩充边界,输入通道为3,输出通道为2
  • 输出通道数为6,其余参数不变。
  • 第一层的输出通道数为3,第二层输出通道数为6。

CNN模型

AlexNet、VGGNet-卷积开创

  • 网络更深:AlexNet一共8层,VGGNet一共16层或19层
  • 数据增广:为增强模型泛化能力,对256×256原始图像进行随机裁剪,得到尺寸为224×224图像,输入网络进行训练
  • ReLU非线性激活函数:减少计算量,缓解梯度消失,缓解过拟合。ReLU激活函数现已成为神经网络中最通用的激活函数
  • Dropout:全连接层神经元以一定概率失活,失活神经元不再参与训练。Dropout的引用,有效缓解了模型的过拟合
  • Pre-Training:先训练一部分小网络,确保稳定之后,在此基础上网络逐渐加深。

GoogLeNet-深度、宽度扩展

  • 网络更深:GoogLeNet一共22层
  • 多分辨率结构:引入Inception结构替代传统卷积+激活
  • 计算量降低:采用1×1卷积核来实现数据降维

深度、宽度再扩展——ResNet、DenseNet

  • 网络更深:ResNet已超过一百层(ResNet-101)
  • 残差连接:特征经两条路线传递,常规路线与捷径
  • 跳跃连接:底层特征与高层特征相融合

络通用性扩展

  • 深度可分离卷积

    • 5×5分通道卷积
    • 1×1卷积融合各通道特征
  • 空洞卷积(膨胀卷积)

    • 局部输入不变
    • 感受野变大

计算范式

  • 多维欧式空间
  • 局部空间响应
  • 卷积参数共享

卷积神经网络拓展至非欧空间

欧式空间非规则化连接—活性卷积
活性卷积 (CVPR 2017) --> 卷积核形状可变

如何卷积核形状可变

  • 双线性插值:离散坐标下,可以通过插值方法计算得到连续位置的像素值
  • 可学习参数 Δ α k , Δ β k \Delta \alpha_k,\Delta \beta_k Δαk,Δβk
  • 可变卷积核形状固定
  • 卷积核位置参数化
  • 双线性插值连续化
  • 传统BP算法训练

    偏移示例

    可变形卷积 (ICCV 2017)
  • 3×3 可变形卷积 (N=9) ➢ 每个位置对应一个偏置
  • 偏置通过额外卷积学习
  • 每个偏置为二维向量

总结

欧式空间卷积神经网络

  • 处理固定输入维度数据、局部输入数据必须有序
  • 语音、图像、视频(规则结构)满足以上两点要求

非欧式空间结构数据

  • 局部输入维度可变
  • 局部输入排列无序
  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

发呆的比目鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值