第一节:transformer的架构介绍 + 输入部分的实现
链接: https://editor.csdn.net/md/?articleId=124648718
第二节 编码器部分实现(一)
链接: https://blog.csdn.net/weixin_42521185/article/details/124702949
第三节 编码器部分实现(二)
链接:https://blog.csdn.net/weixin_42521185/article/details/124724264
第四节 编码器部分实现(三)
链接:
1 前馈全连接层
-
什么是前馈全连接层?
在Transfomer中前馈全连接层就是,具有两层线性层的全连接网络。 -
作用:
考虑注意力机制,可能对复杂过程的拟合程度不够,通过增加两层网络来增强模型的拟合能力。
1.1 前馈全连接层的代码
- 这里注意,利用上一层的输出作为输入,两层全连接层,作用是协助注意力机制拟合特征
- 这里的输出保持和上一层一致!
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
# d_model : 代表词嵌入的维度,同时也是两个线性层的输入维度和输出维度
# d_ff : 代表第一个线性层的输出维度,和第二个线性层的输入维度
# dropout : 经过Dropout层处理时,随机置零
super(PositionwiseFeedForward, self).__init__()
# 定义两层全连接的线性层
self.w1 = nn.Linear(d_model, d_ff)
self.w2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
# x: 来自上一层的输出
# 首先将x送入第一个线性网络,然后relu 然后dropout
# 然后送入第二个线性层
return self.w2(self.dropout(F.relu((self.w1(x)))))
- 设置传入的参数,这里注意,是要使用到前面多头注意力机制的输出的!
mha_result
d_model = 512
d_ff = 64
dropout = 0.2
# 这个是上一层的输出,作为前馈连接的输入
x = mha_result
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
ff_result = ff(x)
print(ff_result)
print(ff_result.shape)
1.2 包括前面学习内容的完整代码
import math
from torch.autograd import Variable
from torch import nn
import torch
from embedding_layer import Embedding
import copy
# 构建位置编码器的类
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
# d_model : 代表词嵌入的维度
# dropout : 代表Dropout层的置零比率
# max_len : 代表每个句子的最大长度
super(PositionalEncoding, self).__init__()
# 实例化 Dropout层
self.dropout = nn.Dropout(p=dropout)
# 初始化一个位置编码矩阵,大小是 max_len * d_model
pe = torch.zeros(max_len, d_model)
# 初始化一个绝对位置矩阵, max_len * 1
position = torch.arange(0, max_len).unsqueeze(1)
# print(position)
# 定义一个变化矩阵,div_term, 跳跃式的初始化
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
# print("ndiv_term", div_term)
# 将前面定义的变化矩阵 进行技术,偶数分别赋值
pe[:, 0::2] = torch.sin(position * div_term) # 用正弦波给偶数部分赋值
pe[:, 1::2] = torch.cos(position * div_term) # 用余弦波给奇数部分赋值
# 将二维张量,扩充为三维张量
pe = pe.unsqueeze(0) # 1 * max_len * d_model
# 将位置编码矩阵,注册成模型的buffer,这个buffer不是模型中的参数,不跟随优化器同步更新
# 注册成buffer后,就可以在模型保存后 重新加载的时候,将这个位置编码器和模型参数
self.register_buffer('pe', pe)
def forward(self, x):
# x : 代表文本序列的词嵌入表示
# 首先明确pe的编码太长了,将第二个维度,就是max_len对应的维度,缩小成x的句子的同等的长度
x = x + Variable(self.pe[:, : x.size(1)], requires_grad=False) # 表示位置编码是不参与更新的
return self.dropout(x)
d_model = 512
dropout = 0.1
max_len = 60
vocab = 1000
x = Variable(torch.LongTensor([[100, 2, 421, 508], [491, 998, 1, 221]]))
emb = Embedding(vocab, d_model)
embr = emb(x)
x = embr # shape: [2, 4, 512]
pe = PositionalEncoding(d_model, dropout, max_len)
pe_result = pe(x)
# print(pe_result)
import math
from torch.autograd import Variable
from torch import nn
import torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
def attention(query, key, value, mask=None, dropout=None):
# query, key, value : 代表注意力的三个输入张量
# mask : 掩码张量
# dropout : 传入Dropout实例化对象
# 首先,将query的最后一个维度提取出来,代表的是词嵌入的维度
d_k = query.size(-1)
# 按照注意力计算公式,将query和key 的转置进行矩阵乘法,然后除以缩放系数
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
# print("..", scores.shape)
# 判断是否使用掩码张量
if mask is not None:
# 利用masked_fill 方法,将掩码张量和0进行位置的意义比较,如果等于0,就替换成 -1e9
scores = scores.masked_fill(mask == 0, -1e9)
# scores的最后一个维度上进行 softmax
p_attn = F.softmax(scores, dim=-1)
# 判断是否使用dropout
if dropout is not None:
p_attn = dropout(p_attn)
# 最后一步完成p_attm 和 value 的乘法,并返回query的注意力表示
return torch.matmul(p_attn, value), p_attn
query = key = value = pe_result
mask = Variable(torch.zeros(2, 4, 4))
attn, p_attn = attention(query, key, value, mask=mask)
# print('attn', attn)
# print('attn.shape', attn.shape)
# print("p_attn", p_attn)
# print(p_attn.shape)
# 实现克隆函数,因为在多头注意力机制下,要用到多个结果相同的线性层
# 需要使用clone 函数u,将他们统一 初始化到一个网络层列表对象中
def clones(module, N):
# module : 代表要克隆的目标网络层
# N : 将module几个
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
# 实现多头注意力机制的类
class MultiHeadAttention(nn.Module):
def __init__(self, head, embedding_dim, dropout=0.1):
# head : 代表几个头的函数
# embedding_dim : 代表词嵌入的维度
# dropout
super(MultiHeadAttention, self).__init__()
# 强调:多头的数量head 需要整除 词嵌入的维度 embedding_dim
assert embedding_dim % head == 0
# 得到每个头,所获得 的词向量的维度
self.d_k = embedding_dim // head
self.head = head
self.embedding_dim = embedding_dim
# 获得线性层,需要获得4个,分别是Q K V 以及最终输出的线性层
self.linears = clones(nn.Linear(embedding_dim, embedding_dim), 4)
# 初始化注意力张量
self.attn = None
# 初始化dropout对象
self.drop = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
# query,key,value 是注意力机制的三个输入张量,mask代表掩码张量
# 首先判断是否使用掩码张量
if mask is not None:
# 使用squeeze将掩码张量进行围堵扩充,代表多头的第n个头
mask = mask.unsqueeze(1)
# 得到batch_size
batch_size = query.size(0)
# 首先使用 zip 将网络能和输入数据连接在一起,模型的输出 利用 view 和 transpose 进行维度和形状的
query, key, value = \
[model(x).view(batch_size, -1, self.head, self.d_k).transpose(1, 2)
for model, x in zip(self.linears, (query, key, value))]
# 将每个头的输出 传入到注意力层
x, self.attn = attention(query, key, value, mask=mask, dropout=self.drop)
# 得到每个头的计算结果,每个output都是4维的张量,需要进行维度转换
# 前面已经将transpose(1, 2)
# 注意,先transpose 然后 contiguous,否则无法使用view
x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.head*self.d_k)
# 最后将x输入到线性层的最后一个线性层中进行处理,得到最终的多头注意力结构输出
return self.linears[-1](x)
# 实例化若干个参数
head = 8
embedding_dim = 512
dropout = 0.2
# 若干输入参数的初始化
query = key = value = pe_result
mask = Variable(torch.zeros(2, 4, 4))
mha = MultiHeadAttention(head, embedding_dim, dropout)
mha_result = mha(query, key, value, mask)
# print(mha_result)
# print(mha_result.shape)
import math
from torch.autograd import Variable
from torch import nn
import torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
# d_model : 代表词嵌入的维度,同时也是两个线性层的输入维度和输出维度
# d_ff : 代表第一个线性层的输出维度,和第二个线性层的输入维度
# dropout : 经过Dropout层处理时,随机置零
super(PositionwiseFeedForward, self).__init__()
# 定义两层全连接的线性层
self.w1 = nn.Linear(d_model, d_ff)
self.w2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
# x: 来自上一层的输出
# 首先将x送入第一个线性网络,然后relu 然后dropout
# 然后送入第二个线性层
return self.w2(self.dropout(F.relu((self.w1(x)))))
d_model = 512
d_ff = 64
dropout = 0.2
# 这个是上一层的输出,作为前馈连接的输入
x = mha_result
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
ff_result = ff(x)
print(ff_result)
print(ff_result.shape)
2 规范化层
2.1 规范化层的作用
- 可以当成是 神经网络的标配
- 因为随着网络层数增加,通过多层的计算后,参数可能出现或大或小的情况,这种情况是不利于神经网络收敛计算的。
- 经过了规范化,可以提高神经网络的计算速度
2.2 规范化层的讲解
eps = 1e-6
: 是一个非常小的数,一般出现在分母,防止除零错误- 两个辅助张量,ones 和zeros
- nn.Parameter 定义的参数,也是会随着模型一起训练的
2.3 实现规范化层的代码
- 代码:
# 构架规范化层的类
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
# features : 代表词嵌入的维度
# eps :一个很小的数,防止在规范化公式 除以0
super(LayerNorm, self).__init__()
# 初始化两个参数张量 a2 b 2 用于对结果作规范化 操作计算
# 用nn.Parameter 封装,代表他们也是模型中的参数,也要随着模型计算而计算
self.a2 = nn.Parameter(torch.ones(features))
self.b2 = nn.Parameter(torch.zeros(features))
self.eps = eps # 传入到模型中去
def forward(self, x):
# x : 是上一层网络的输出 (两层的前馈全连接层)
# 首先对x进行 最后一个维度上的求均值操作,同时要求保持输出维度和输入维度一致
mean = x.mean(-1, keepdim=True)
# 接着对x最后一个维度上求标准差的操作,同时要求保持输出维度和输入维度一制
std = x.std(-1, keepdim=True)
# 按照规范化公式进行计算并返回
return self.a2 * (x-mean) / (std + self.eps) + self.b2
2.4 完整代码
- 可以直接运行!
import math
from torch.autograd import Variable
from torch import nn
import torch
import copy
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
# main作用:集成了整个Transformer代码
########################################################################################################################
########################################################################################################################
# 构建 Embedding 类来实现文本嵌入层
# vocab : 词表的长度, d_model : 词嵌入的维度
class Embedding(nn.Module):
def __init__(self, vocab, d_model):
super(Embedding, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
# 词表: 1000*512, 共是1000个词,每一行是一个词,每个词是一个512d的向量表示
vocab = 1000
d_model = 512
x = Variable(torch.LongTensor([[100, 2, 421, 508], [491, 998, 1, 221]]))
emb = Embedding(vocab, d_model)
embr = emb(x)
########################################################################################################################
# 构建位置编码器的类
# d_model : 代表词嵌入的维度
# dropout : 代表Dropout层的置零比率
# max_len : 代表每个句子的最大长度
# 初始化一个位置编码矩阵pe,大小是 max_len * d_model
# 初始化一个绝对位置矩阵position, 大小是max_len * 1
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
# 定义一个变化矩阵,div_term, 跳跃式的初始化
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
# 将前面定义的变化矩阵 进行技术,偶数分别赋值
pe[:, 0::2] = torch.sin(position * div_term) # 用正弦波给偶数部分赋值
pe[:, 1::2] = torch.cos(position * div_term) # 用余弦波给奇数部分赋值
# 将二维张量,扩充为三维张量
pe = pe.unsqueeze(0) # 1 * max_len * d_model
# 将位置编码矩阵,注册成模型的buffer,这个buffer不是模型中的参数,不跟随优化器同步更新
# 注册成buffer后,就可以在模型保存后 重新加载的时候,将这个位置编码器和模型参数
self.register_buffer('pe', pe)
def forward(self, x):
# x : 代表文本序列的词嵌入表示
# 首先明确pe的编码太长了,将第二个维度,就是max_len对应的维度,缩小成x的句子的同等的长度
x = x + Variable(self.pe[:, : x.size(1)], requires_grad=False) # 表示位置编码是不参与更新的
return self.dropout(x)
d_model = 512
dropout = 0.1
max_len = 60
vocab = 1000
x = Variable(torch.LongTensor([[100, 2, 421, 508], [491, 998, 1, 221]]))
emb = Embedding(vocab, d_model)
embr = emb(x)
x = embr # shape: [2, 4, 512]
pe = PositionalEncoding(d_model, dropout, max_len)
pe_result = pe(x)
# print(pe_result)
def attention(query, key, value, mask=None, dropout=None):
# query, key, value : 代表注意力的三个输入张量
# mask : 掩码张量
# dropout : 传入Dropout实例化对象
# 首先,将query的最后一个维度提取出来,代表的是词嵌入的维度
d_k = query.size(-1)
# 按照注意力计算公式,将query和key 的转置进行矩阵乘法,然后除以缩放系数
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
# print("..", scores.shape)
# 判断是否使用掩码张量
if mask is not None:
# 利用masked_fill 方法,将掩码张量和0进行位置的意义比较,如果等于0,就替换成 -1e9
scores = scores.masked_fill(mask == 0, -1e9)
# scores的最后一个维度上进行 softmax
p_attn = F.softmax(scores, dim=-1)
# 判断是否使用dropout
if dropout is not None:
p_attn = dropout(p_attn)
# 最后一步完成p_attm 和 value 的乘法,并返回query的注意力表示
return torch.matmul(p_attn, value), p_attn
query = key = value = pe_result
mask = Variable(torch.zeros(2, 4, 4))
attn, p_attn = attention(query, key, value, mask=mask)
# print('attn', attn)
# print('attn.shape', attn.shape)
# print("p_attn", p_attn)
# print(p_attn.shape)
# 实现克隆函数,因为在多头注意力机制下,要用到多个结果相同的线性层
# 需要使用clone 函数u,将他们统一 初始化到一个网络层列表对象中
def clones(module, N):
# module : 代表要克隆的目标网络层
# N : 将module几个
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
# 实现多头注意力机制的类
class MultiHeadAttention(nn.Module):
def __init__(self, head, embedding_dim, dropout=0.1):
# head : 代表几个头的函数
# embedding_dim : 代表词嵌入的维度
# dropout
super(MultiHeadAttention, self).__init__()
# 强调:多头的数量head 需要整除 词嵌入的维度 embedding_dim
assert embedding_dim % head == 0
# 得到每个头,所获得 的词向量的维度
self.d_k = embedding_dim // head
self.head = head
self.embedding_dim = embedding_dim
# 获得线性层,需要获得4个,分别是Q K V 以及最终输出的线性层
self.linears = clones(nn.Linear(embedding_dim, embedding_dim), 4)
# 初始化注意力张量
self.attn = None
# 初始化dropout对象
self.drop = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
# query,key,value 是注意力机制的三个输入张量,mask代表掩码张量
# 首先判断是否使用掩码张量
if mask is not None:
# 使用squeeze将掩码张量进行围堵扩充,代表多头的第n个头
mask = mask.unsqueeze(1)
# 得到batch_size
batch_size = query.size(0)
# 首先使用 zip 将网络能和输入数据连接在一起,模型的输出 利用 view 和 transpose 进行维度和形状的
query, key, value = \
[model(x).view(batch_size, -1, self.head, self.d_k).transpose(1, 2)
for model, x in zip(self.linears, (query, key, value))]
# 将每个头的输出 传入到注意力层
x, self.attn = attention(query, key, value, mask=mask, dropout=self.drop)
# 得到每个头的计算结果,每个output都是4维的张量,需要进行维度转换
# 前面已经将transpose(1, 2)
# 注意,先transpose 然后 contiguous,否则无法使用view
x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.head*self.d_k)
# 最后将x输入到线性层的最后一个线性层中进行处理,得到最终的多头注意力结构输出
return self.linears[-1](x)
# 实例化若干个参数
head = 8
embedding_dim = 512
dropout = 0.2
# 若干输入参数的初始化
query = key = value = pe_result
mask = Variable(torch.zeros(2, 4, 4))
mha = MultiHeadAttention(head, embedding_dim, dropout)
mha_result = mha(query, key, value, mask)
# print(mha_result)
# print(mha_result.shape)
import math
from torch.autograd import Variable
from torch import nn
import torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
# d_model : 代表词嵌入的维度,同时也是两个线性层的输入维度和输出维度
# d_ff : 代表第一个线性层的输出维度,和第二个线性层的输入维度
# dropout : 经过Dropout层处理时,随机置零
super(PositionwiseFeedForward, self).__init__()
# 定义两层全连接的线性层
self.w1 = nn.Linear(d_model, d_ff)
self.w2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
# x: 来自上一层的输出
# 首先将x送入第一个线性网络,然后relu 然后dropout
# 然后送入第二个线性层
return self.w2(self.dropout(F.relu((self.w1(x)))))
d_model = 512
d_ff = 64
dropout = 0.2
# 这个是上一层的输出,作为前馈连接的输入
x = mha_result
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
ff_result = ff(x)
# print(ff_result)
# print(ff_result.shape)
# 构架规范化层的类
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
# features : 代表词嵌入的维度
# eps :一个很小的数,防止在规范化公式 除以0
super(LayerNorm, self).__init__()
# 初始化两个参数张量 a2 b 2 用于对结果作规范化 操作计算
# 用nn.Parameter 封装,代表他们也是模型中的参数,也要随着模型计算而计算
self.a2 = nn.Parameter(torch.ones(features))
self.b2 = nn.Parameter(torch.zeros(features))
self.eps = eps # 传入到模型中去
def forward(self, x):
# x : 是上一层网络的输出 (两层的前馈全连接层)
# 首先对x进行 最后一个维度上的求均值操作,同时要求保持输出维度和输入维度一致
mean = x.mean(-1, keepdim=True)
# 接着对x最后一个维度上求标准差的操作,同时要求保持输出维度和输入维度一制
std = x.std(-1, keepdim=True)
# 按照规范化公式进行计算并返回
return self.a2 * (x-mean) / (std + self.eps) + self.b2
features = d_model = 512
eps = 1e-6
x = ff_result
ln = LayerNorm(features, eps)
ln_result = ln(x)
print(ln_result)
print(ln_result.shape)
- 输出结果:
tensor([[[ 7.5314e-01, 1.1069e+00, 1.6788e+00, ..., 8.2092e-01,
2.1026e+00, -1.6079e+00],
[ 2.0356e+00, 2.2696e+00, 3.9820e-02, ..., -3.3840e-03,
4.2480e-01, -1.2518e+00],
[ 1.7311e+00, 1.9941e+00, 4.4274e-01, ..., -2.4831e-01,
1.2970e+00, -1.5437e+00],
[ 7.6818e-01, 1.3167e+00, -1.0743e-01, ..., -4.9033e-01,
8.1483e-01, -1.3569e-01]],
[[ 5.7923e-01, 2.5550e-01, -1.4376e-01, ..., -6.6552e-01,
-3.5072e-01, 1.2394e-03],
[ 4.9446e-01, 3.5806e-01, 3.7898e-01, ..., -8.0877e-01,
-1.2241e+00, -4.8933e-01],
[ 1.1646e+00, 2.8150e-01, 1.3062e+00, ..., -8.8959e-01,
-1.5397e+00, -1.2664e-02],
[ 4.1892e-01, 2.0376e-01, 3.4781e-01, ..., -1.6625e+00,
-2.5020e+00, -2.1855e-01]]], grad_fn=<AddBackward0>)
torch.Size([2, 4, 512])
- 输出结果分析: 规范化层就是使得数据更加合理,在合理的范围内。
- 所以说,输出结果是
[2, 4, 512]