torch.svd(input, some=True, compute_uv=True, *, out=None) -> (Tensor, Tensor, Tensor)
计算一个矩阵或一批矩阵 input 的奇异值分解。
奇异值分解表示为namedtuple( U,S,V ),使得 input = U DIAG( S ) Vᴴ ,其中 Vᴴ 是的转置 V 为实数值的输入,或共轭转置 V 为复值输入。如果 input 是一批张量,则 U 、 S 和 V 也使用与 input 相同的批维度进行批处理。
-
如果 some 为 True (默认),则该方法返回简化的奇异值分解,即,如果 input 的最后两个维度是 m 和 n ,则返回的 U 和 V 矩阵将仅包含 min( n, m ) 正交列。
-
如果 compute_uv 为 False ,则返回的 U 和 V 将分别是形状为 (m × m) 和 (n × n) 的零填充矩阵,并且与 input 具有相同的设备。当 compute_uv 为 False 时, some 参数无效。
-
支持 float、double、cfloat 和 cdouble 数据类型的输入。 U 和 V 的 dtypes与 input 的相同。 S 将始终为实值,即使 input 是复数。
Warning
torch.svd() 已弃用。请改用 torch.linalg.svd() ,它类似于 NumPy 的 numpy.linalg.svd 。
Note1
与 torch.linalg.svd() 的区别:
-
some 与 torch.linalg.svd() 的 full_matricies 相反。请注意,两者的默认值都是 True ,因此默认行为实际上是相反的。
-
torch.svd() 返回 V ,而 torch.linalg.svd() 返回 Vᴴ 。
-
如果 compute_uv=False , torch.svd() 返回 U 和 Vh 的零填充张量,而 torch.linalg.svd() 返回空张量。
Note
奇异值以降序返回。如果 input 是一批矩阵,则该批中每个矩阵的奇异值将按降序返回。
Note2
CPU 上的 SVD 实现使用 LAPACK 例程 ?gesdd (一种分而治之的算法)而不是 ?gesvd 来提高速度。类似地,GPU 上的 SVD 在CUDA 10.1.243 及更高版本上使用 cuSOLVER 例程 gesvdj 和 gesvdjBatched ,并在早期版本的 CUDA 上使用 MAGMA 例程 gesdd 。
Note3
返回的矩阵 U 将被转置,即步幅为 U.contiguous().transpose(-2, -1).stride() 。
Note4
如果 input 不是满秩或具有非唯一奇异值,则使用 U 和 V 计算的梯度可能不稳定。
Note5
当 some = False 时, U[…, :, min(m, n):] 和 V[…, :, min(m, n):] 和U […,:,min(m,n):]上的梯度将被向后忽略,因为这些向量可以是子空间的任意基数。
Note6
该 S 张量只能用来计算梯度,如果 compute_uv 为True。
Note7
对于复值输入,反向操作仅适用于规范不变损失函数。请查看AD中的仪表问题以获取更多详细信息。
Note8
由于SVD 的 U 和 V 不是唯一的,每个向量可以乘以任意相位因子e^{i \phi} 而 SVD 结果仍然正确。不同的平台,如 Numpy,或不同设备类型的输入,可能会产生不同的 U 和 V 张量。
Parameters
- input ( Tensor ) – 大小为 (*, m, n) 的输入张量,其中 * 是零个或多个由 (m × n) 矩阵组成的批量维度。
- some ( bool , optional ) – 控制是计算简化分解还是完全分解,从而控制返回的 U 和 V 的形状。默认为真。
- compute_uv ( bool , optional ) – 是否计算 U 和 V 的选项。默认为真。
- 關鍵字參數
out(元组,可选)–张量的输出元组
Example:
>>> a = torch.randn(5, 3)
>>> a
tensor([[ 0.2364, -0.7752, 0.6372],
[ 1.7201, 0.7394, -0.0504],
[-0.3371, -1.0584, 0.5296],
[ 0.3550, -0.4022, 1.5569],
[ 0.2445, -0.0158, 1.1414]])
>>> u, s, v = torch.svd(a)
>>> u
tensor([[ 0.4027, 0.0287, 0.5434],
[-0.1946, 0.8833, 0.3679],
[ 0.4296, -0.2890, 0.5261],
[ 0.6604, 0.2717, -0.2618],
[ 0.4234, 0.2481, -0.4733]])
>>> s
tensor([2.3289, 2.0315, 0.7806])
>>> v
tensor([[-0.0199, 0.8766, 0.4809],
[-0.5080, 0.4054, -0.7600],
[ 0.8611, 0.2594, -0.4373]])
>>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t()))
tensor(8.6531e-07)
>>> a_big = torch.randn(7, 5, 3)
>>> u, s, v = torch.svd(a_big)
>>> torch.dist(a_big, torch.matmul(torch.matmul(u, torch.diag_embed(s)), v.transpose(-2, -1)))
tensor(2.6503e-06)