2020-10-22 吴恩达DL学习-C5 序列模型-W1 循环序列模型(1.10 长短期记忆(LSTM)-改善梯度消失-在序列中学习非常深的连接-)

274 篇文章 24 订阅
233 篇文章 0 订阅

1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c
2.详细笔记网站(中文):http://www.ai-start.com/dl2017/
3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai

1.10 长短期记忆(LSTM) LSTM (long short term memory) unit

在上节课中你已经学了GRU(门控循环单元)。它能够让你可以在序列中学习非常深的连接。其他类型的单元也可以让你做到这个,比如LSTM即长短时记忆网络,甚至比GRU更加有效,让我们看看。
在这里插入图片描述

上图是上节课中的式子,对于GRU我们有 a < t > = c < t > a^{<t>}=c^{<t>} a<t>=c<t>

还有两个门:

  • 更新门 Γ u \Gamma_u Γu(the update gate)
  • 相关门 Γ r \Gamma_r Γr(the relevance gate)

c ~ < t > \tilde c^{<t>} c~<t>,这是代替记忆细胞的候选值,然后我们使用更新门 Γ u \Gamma_u Γu来决定是否要用 c ~ < t > \tilde c^{<t>} c~<t> 更新 c < t > c^{<t>} c<t>(公式4)。

LSTM是一个比GRU更加强大和通用的版本,这多亏了 Sepp Hochreiter和 Jurgen Schmidhuber,感谢那篇开创性的论文,它在序列模型上有着巨大影响。我感觉这篇论文是挺难读懂的,虽然我认为这篇论文在DL社群有着重大的影响,它深入讨论了梯度消失的理论,我感觉大部分的人学到LSTM的细节是在其他的地方,而不是这篇论文。
在这里插入图片描述

这就是LSTM主要的式子,我们继续回到记忆细胞 c c c上面来。
使用 c ~ < t > = t a n h ( W c [ a < t − 1 > , x < t > ] + b c ) \tilde c^{<t>}=tanh(W_c[a^{<t-1>},x^{<t>}]+b_c) c~<t>=tanh(Wc[a<t1>,x<t>]+bc)来更新它的候选值 c ~ < t > \tilde c^{<t>} c~<t>

注意了,在LSTM中我们不再有 a < t > = c < t > a^{<t>}=c^{<t>} a<t>=c<t>的情况,上图右边现在我们用的是类似于GRU的公式,但是有一些改变。现在我们专门使用 a < t > a^{<t>} a<t>或者 a < t − 1 > a^{<t-1>} a<t1>,而不是用 c < t − 1 > c^{<t-1>} c<t1>,我们也不用 Γ r \Gamma_r Γr,即相关门。虽然你可以使用LSTM的变体,然后把GRU公式公式中的这些东西都放回来,但是在更加典型的LSTM里面,我们先不那样做。
在这里插入图片描述

我们像以前那样有一个更新门 Γ u \Gamma_u Γu和表示更新的参数 W u W_u Wu Γ u = σ ( W u [ a < t − 1 > , x < t > ] + b u ) \Gamma_u=\sigma(W_u[a^{<t-1>},x^{<t>}]+b_u) Γu=σ(Wu[a<t1>,x<t>]+bu)
在这里插入图片描述

一个LSTM的新特性是不只有一个更新门控制, Γ r \Gamma_r Γr 1 − Γ r 1-\Gamma_r 1Γr这两项,我们将用不同的项来代替它们,这里我们用遗忘门(the forget gate),我们叫它 Γ f \Gamma_f Γf,
Γ f = σ ( W f [ a < t − 1 > , x < t > ] + b f ) \Gamma_f=\sigma(W_f[a^{<t-1>},x^{<t>}]+b_f) Γf=σ(Wf[a<t1>,x<t>]+bf)
在这里插入图片描述

然后我们有一个新的sigmod输出门 Γ o \Gamma_o Γo,
Γ o = σ ( W o [ a < t − 1 > , x < t > ] ) + b o \Gamma_o=\sigma(W_o[a^{<t-1>},x^{<t>}])+b_o Γo=σ(Wo[a<t1>,x<t>])+bo
在这里插入图片描述

于是记忆细胞的更新值
c < t > = Γ u ∗ c ~ < t > + Γ f ∗ c < t − 1 > c^{<t>}=\Gamma_u * \tilde c^{<t>} +\Gamma_f * c^{<t-1>} c<t>=Γuc~<t>+Γfc<t1>
所以这给了记忆细胞选择权去维持旧的值 c < t − 1 > c^{<t-1>} c<t1>或者就加上新的值 c ~ < t > \tilde c^{<t>} c~<t>,所以这里用了单独的更新门 Γ u \Gamma_u Γu和遗忘门 Γ f \Gamma_f Γf

  • Γ u \Gamma_u Γu表示更新门,update
  • Γ f \Gamma_f Γf表示遗忘门,forgot
  • Γ o \Gamma_o Γo表示输出门,output

最后的 a < t > a^{<t>} a<t>公式会变成
a t = Γ o ∗ c < t > a^{t}=\Gamma_o * c^{<t>} at=Γoc<t>
在这里插入图片描述

以上这就是LSTM主要的公式了,然后LSTM这里有三个门而不是两个,这有点复杂,它把门放到了和之前有点不同的地方。

在这里插入图片描述

再提一下,上图这些公式就是控制LSTM行为的主要的公式。
在这里插入图片描述

像之前一样用图片稍微解释一下,先让我把图画在上面。
如果图片过于复杂,别担心,我个人感觉式子比图片好理解,我画图只是因为它比较直观。这个图的灵感来自于Chris Ola的一篇博客,标题是《理解LSTM网络》(Understanding LSTM Network),这里的这张图跟他博客上的图是很相似的,但关键的不同可能是这里的这张图用了 a < t − 1 > a^{<t-1>} a<t1> x < t > x^{<t>} x<t>来计算所有门值。

在这张图里是用 a < t − 1 > a^{<t-1>} a<t1> x < t > x^{<t>} x<t>一起来计算遗忘门 Γ f \Gamma_f Γf的值,还有更新门 Γ u \Gamma_u Γu以及输出门 Γ o \Gamma_o Γo。然后它们也经过tanh函数来计算 c ~ < t > \tilde c^{<t>} c~<t>,这些值被用复杂的方式组合在一起,比如说元素对应的乘积或者其他的方式来从之前的 c < t − 1 > c^{<t-1>} c<t1>中获得 c < t > c^{<t>} c<t>
在这里插入图片描述

这里其中一个元素很有意思,如你在这上面的一堆图中看到的,如果把它们按时间次序连起来,例如:左边第一个图输出了上一个时间的 a < 1 > a^{<1>} a<1> a < 1 > a^{<1>} a<1>会作为下一个时间步的输入, c c c也是同理。

在这里我把图简化了一下。然后这有个有意思的事情,你会注意到上面这里有条线(上图中的红色线),这条线显示了只要你正确地设置了遗忘门和更新门,LSTM是相当容易把 c < 0 > c^{<0>} c<0>的值一直往下传递到右边,比如 c < 3 > = c < 0 > c^{<3>}=c^{<0>} c<3>=c<0>

这就是为什么LSTM和GRU非常擅长于长时间记忆某个值,对于存在记忆细胞中的某个值,即使经过很长很长的时间步。
在这里插入图片描述

这就是LSTM,你可能会想到这里和一般使用的版本会有些不同,最常用的版本可能是门值不仅取决于 a < t − 1 > a^{<t-1>} a<t1> x < t > x^{<t>} x<t>,有时候也可以偷窥一下 c < t − 1 > c^{<t-1>} c<t1>的值,这叫做“窥视孔连接”(peephole connection)。虽然不是个好听的名字,但是你想,“偷窥孔连接”其实意思就是门值不仅取决于 a < t − 1 > a^{<t-1>} a<t1> x < t > x^{<t>} x<t>,也取决于上一个记忆细胞的值( c < t − 1 > c^{<t-1>} c<t1>),然后“偷窥孔连接”就可以结合这三个门( Γ u \Gamma_u Γu Γ f \Gamma_f Γf Γ o \Gamma_o Γo)来计算了。

如你所见LSTM主要的区别在于一个技术上的细节,比如 c < t − 1 > c^{<t-1>} c<t1>有一个100维的向量,你有一个100维的隐藏的记忆细胞单元,然后比如第50个 c < t − 1 > c^{<t-1>} c<t1>的元素只会影响第50个元素对应的那个门,所以关系是一对一的,于是并不是任意这100维的 c < t − 1 > c^{<t-1>} c<t1>可以影响所有的门元素。相反的,第一个 c < t − 1 > c^{<t-1>} c<t1>的元素只能影响门的第一个元素,第二个元素影响对应的第二个元素,如此类推。但如果你读过论文,见人讨论“偷窥孔连接”,那就是在说 c < t − 1 > c^{<t-1>} c<t1>也能影响门值。

总结

这就是LSTM,我们什么时候应该用GRU?什么时候用LSTM?

这里没有统一的准则。而且即使我先讲解了GRU,在DL的历史上,LSTM也是更早出现的,而GRU是最近才发明出来的,它可能源于Pavia在更加复杂的LSTM模型中做出的简化。研究者们在很多不同问题上尝试了这两种模型,看看在不同的问题不同的算法中哪个模型更好,所以这不是个学术和高深的算法,我才想要把这两个模型展示给你。

GRU的优点是这是个更加简单的模型,所以更容易创建一个更大的网络,而且它只有两个门,在计算性上也运行得更快,然后它可以扩大模型的规模。

但是LSTM更加强大和灵活,因为它有三个门而不是两个。如果你想选一个使用,我认为LSTM在历史进程上是个更优先的选择,所以如果你必须选一个,我感觉今天大部分的人还是会把LSTM作为默认的选择来尝试。虽然我认为最近几年GRU获得了很多支持,而且我感觉越来越多的团队也正在使用GRU,因为它更加简单,而且还效果还不错,它更容易适应规模更加大的问题。

所以这就是LSTM,无论是GRU还是LSTM,你都可以用它们来构建捕获更加深层连接的神经网络。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值