平稳过程的各态历经性、谱密度及其例题分析


前言

本文的主要内容是均方极限的介绍,平稳过程的各态历经性、谱密度的介绍及其例题分析。


一、均方极限

设有二阶矩随机序列{Xn}和二阶矩随机变量X,若有
在这里插入图片描述
成立,则称{Xn}均方收敛于X。记作:
在这里插入图片描述
或者
在这里插入图片描述
其中ms代表mean square,即均方。l.i.mlimit in mean的缩写,即平均值极限或均方极限。


二、平稳过程的各态历经性

1.定义

设 {X(t), -∞<t<∞} 是均方连续的平稳过程,时间均值的表达式为:
在这里插入图片描述
时间相关函数的表达式为:
在这里插入图片描述
如果有:
在这里插入图片描述
则称平稳过程的均值具有遍历性
如果有:
在这里插入图片描述
也即
在这里插入图片描述
则称平稳过程的相关函数具有遍历性
如果均方连续的平稳过程 {X(t), -∞<t<∞} 的均值和相关函数都具有遍历性,则称该平稳过程具有各态历经性或遍历性

2.各态历经性例题

各态历经性的例题分析如下图。
请添加图片描述

3.积化和差、和差化积公式

积化和差公式:
在这里插入图片描述
和差化积公式:
在这里插入图片描述


三、谱密度

1.定义

设均方连续的平稳过程 {X(t), -∞<t<∞} 的相关函数在任一有限区间上只有有限个极值,且在上绝对可积,则有:
在这里插入图片描述
该式子也称为维纳-辛钦公式
对该式做傅里叶反变换有:
在这里插入图片描述
即如果已知谱密度,也可以反过来求相关函数。
当X(t)为实平稳过程时,有:
在这里插入图片描述

2.谱密度例题

请添加图片描述
用到的傅里叶变换如下:
请添加图片描述


总结

以上就是平稳过程的各态历经性、谱密度及其例题分析的所有内容了,本文参考的是刘次华随机过程第五版课本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西岸贤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值