前言
本文的主要内容是均方极限的介绍,平稳过程的各态历经性、谱密度的介绍及其例题分析。
一、均方极限
设有二阶矩随机序列{Xn}和二阶矩随机变量X,若有
成立,则称{Xn}均方收敛于X。记作:
或者
其中ms代表mean square,即均方。l.i.m是limit in mean的缩写,即平均值极限或均方极限。
二、平稳过程的各态历经性
1.定义
设 {X(t), -∞<t<∞} 是均方连续的平稳过程,时间均值的表达式为:
时间相关函数的表达式为:
如果有:
则称平稳过程的均值具有遍历性。
如果有:
也即
则称平稳过程的相关函数具有遍历性。
如果均方连续的平稳过程 {X(t), -∞<t<∞} 的均值和相关函数都具有遍历性,则称该平稳过程具有各态历经性或遍历性。
2.各态历经性例题
各态历经性的例题分析如下图。
3.积化和差、和差化积公式
积化和差公式:
和差化积公式:
三、谱密度
1.定义
设均方连续的平稳过程 {X(t), -∞<t<∞} 的相关函数在任一有限区间上只有有限个极值,且在上绝对可积,则有:
该式子也称为维纳-辛钦公式。
对该式做傅里叶反变换有:
即如果已知谱密度,也可以反过来求相关函数。
当X(t)为实平稳过程时,有:
2.谱密度例题
用到的傅里叶变换如下:
总结
以上就是平稳过程的各态历经性、谱密度及其例题分析的所有内容了,本文参考的是刘次华随机过程第五版课本。